Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Ahead of print
    • Past Issues
    • JNM Supplement
    • SNMMI Annual Meeting Abstracts
    • Continuing Education
    • JNM Podcasts
  • Subscriptions
    • Subscribers
    • Institutional and Non-member
    • Rates
    • Journal Claims
    • Corporate & Special Sales
  • Authors
    • Submit to JNM
    • Information for Authors
    • Assignment of Copyright
    • AQARA requirements
  • Info
    • Reviewers
    • Permissions
    • Advertisers
  • About
    • About Us
    • Editorial Board
    • Contact Information
  • More
    • Alerts
    • Feedback
    • Help
    • SNMMI Journals
  • SNMMI
    • JNM
    • JNMT
    • SNMMI Journals
    • SNMMI

User menu

  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Nuclear Medicine
  • SNMMI
    • JNM
    • JNMT
    • SNMMI Journals
    • SNMMI
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Journal of Nuclear Medicine

Advanced Search

  • Home
  • Content
    • Current
    • Ahead of print
    • Past Issues
    • JNM Supplement
    • SNMMI Annual Meeting Abstracts
    • Continuing Education
    • JNM Podcasts
  • Subscriptions
    • Subscribers
    • Institutional and Non-member
    • Rates
    • Journal Claims
    • Corporate & Special Sales
  • Authors
    • Submit to JNM
    • Information for Authors
    • Assignment of Copyright
    • AQARA requirements
  • Info
    • Reviewers
    • Permissions
    • Advertisers
  • About
    • About Us
    • Editorial Board
    • Contact Information
  • More
    • Alerts
    • Feedback
    • Help
    • SNMMI Journals
  • View or Listen to JNM Podcast
  • Visit JNM on Facebook
  • Join JNM on LinkedIn
  • Follow JNM on Twitter
  • Subscribe to our RSS feeds
OtherClinical Investigations

Brain Incorporation of 11C-Arachidonic Acid, Blood Volume, and Blood Flow in Healthy Aging: A Study With Partial-Volume Correction

Giampiero Giovacchini, Alicja Lerner, Maria T. Toczek, Charles Fraser, Kaizong Ma, James C. DeMar, Peter Herscovitch, William C. Eckelman, Stanley I. Rapoport and Richard E. Carson
Journal of Nuclear Medicine September 2004, 45 (9) 1471-1479;
Giampiero Giovacchini
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alicja Lerner
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Maria T. Toczek
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Charles Fraser
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kaizong Ma
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
James C. DeMar
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Peter Herscovitch
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
William C. Eckelman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Stanley I. Rapoport
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Richard E. Carson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Article Figures & Data

Figures

  • Tables
  • FIGURE 1.
    • Download figure
    • Open in new tab
    • Download powerpoint
    FIGURE 1.

    Estimation of white matter activity for 3S-PVC (Eq. 2) from a 11C-AA PET frame (25–30 min after injection). Activity values for pure white matter were obtained from voxels with smoothed white matter mask value (sWM) close to 1.0. Each point represents mean ± SD of activity in voxels plotted vs. smoothed white matter mask. Activity values of voxels with sWM from 0.99 to 1.0 were fitted to straight line and value at sWM = 1.0 was used as white matter value.

  • FIGURE 2.
    • Download figure
    • Open in new tab
    • Download powerpoint
    FIGURE 2.

    Transverse images derived from 1 typical subject at level of subcortical nuclei (top) and centrum semiovale (bottom). (A) MR image. (B) Original image of incorporation rate for 11C-AA (K*). (C) K* image after 2S-PVC. (D) K* image after 3S-PVC. K* images are scaled to maximum of 12 μL/min/mL.

  • FIGURE 3.
    • Download figure
    • Open in new tab
    • Download powerpoint
    FIGURE 3.

    Relationship between CBF and 11C-AA incorporation rate (K*) before PVC (□), after 2S-PVC (▵), and after 3S-PVC (○). Each point represents global gray matter value for 1 subject (n = 15). No significant relation between K* and CBF was detected. Regression equations were as follows: Uncorrected, K* = 2.93 + 0.039 CBF (r = 0.26; P > 0.05); 2S, K* = 1.65 + 0.075 CBF (r = 0.45; P > 0.05); 3S, K* = 3.98 + 0.047 CBF (r = 0.30; P > 0.05).

Tables

  • Figures
    • View popup
    TABLE 1

    11C-Arachidonic Acid Incorporation Rate (K*)

    RegionUncorrected2S-PVC3S-PVC
    YoungOldPYoungOldPYoungOldP
    Absolute values (μL/min/mL)
    Frontal4.76 (25)4.21 (14)0.35.71 (30)5.36 (9)0.57.40 (31)6.83 (7)0.5
    Temporal4.46 (23)4.23 (11)0.65.06 (25)5.09 (9)0.86.42 (27)6.25 (8)0.8
    Parietal4.79 (24)4.40 (15)0.55.91 (26)5.77 (10)1.08.06 (29)8.07 (7)1.0
    Occipital5.26 (26)4.99 (15)0.65.96 (28)5.87 (10)0.98.16 (29)8.34 (9)0.9
    Caudate4.29 (29)3.81 (19)0.44.86 (29)4.53 (16)0.45.75 (29)5.18 (18)0.4
    Putamen5.43 (26)4.88 (12)0.45.45 (26)4.99 (12)0.27.33 (26)6.33 (13)0.2
    Thalamus5.02 (26)4.74 (13)0.65.31 (26)5.18 (11)0.76.10 (27)5.87 (11)0.7
    Cerebellum5.41 (24)5.16 (13)0.65.93 (29)5.74 (13)0.57.75 (26)7.16 (11)0.5
    Gray matter4.86 (24)4.51 (14)0.55.65 (27)5.45 (10)0.57.35 (28)7.03 (8)0.5
    Values normalized to global gray matter
    Frontal0.98 (2)0.93 (1)0.001*1.00 (4)0.98 (2)0.21.00 (4)0.97 (3)0.2
    Temporal0.92 (3)0.95 (8)0.30.90 (5)0.93 (3)0.10.88 (4)0.89 (3)0.4
    Parietal0.99 (2)0.97 (4)0.51.05 (5)1.06 (2)0.71.10 (5)1.15 (3)0.052
    Occipital1.08 (4)1.10 (3)0.21.06 (4)1.08 (2)0.31.11 (5)1.19 (4)0.014*
    Caudate0.87 (8)0.85 (11)0.50.86 (10)0.83 (11)0.50.78 (11)0.74 (13)0.3
    Putamen1.12 (4)1.09 (7)0.40.97 (6)0.92 (5)0.046*1.01 (8)0.90 (7)0.013*
    Thalamus1.03 (4)1.06 (5)0.30.94 (4)0.95 (4)0.70.83 (6)0.83 (5)1.0
    Cerebellum1.12 (3)1.15 (2)0.081.05 (4)1.05 (4)0.91.06 (8)1.02 (5)0.2
    • ↵* Statistical significance for uncorrected P < 0.05 (unpaired t test between young and old).

    • Mean (% CV) for young (n = 8) and old (n = 7) healthy subjects of K* for 11C-AA in uncorrected images and after 2S-PVC and 3S-PVC.

    • View popup
    TABLE 2

    Cerebral Blood Volume

    RegionUncorrected2S-PVC3S-PVC
    YoungOldPYoungOldPYoungOldP
    Absolute values (mL/mL)
    Frontal0.041 (12)0.038 (7)0.20.049 (15)0.048 (6)0.80.057 (18)0.059 (8)0.5
    Temporal0.045 (13)0.045 (5)0.80.051 (14)0.053 (8)0.60.061 (15)0.066 (6)0.2
    Parietal0.040 (16)0.039 (16)0.80.048 (15)0.051 (20)0.60.059 (20)0.067 (15)0.2
    Occipital0.052 (9)0.046 (12)0.30.058 (7)0.052 (11)0.40.073 (8)0.073 (9)0.9
    Caudate0.040 (12)0.037 (8)0.20.044 (13)0.040 (11)0.10.050 (13)0.049 (10)0.6
    Putamen0.041 (14)0.041 (7)0.90.042 (14)0.041 (8)0.80.050 (16)0.052 (9)0.6
    Thalamus0.050 (14)0.052 (14)0.70.053 (14)0.056 (13)0.50.060 (17)0.065 (14)0.3
    Cerebellum0.052 (22)0.051 (18)0.90.057 (29)0.058 (20)1.00.069 (28)0.069 (17)1.0
    Gray matter0.045 (12)0.043 (8)0.60.051 (13)0.052 (8)0.90.061 (16)0.065 (6)0.4
    Values normalized to global gray matter
    Frontal0.92 (5)0.88 (1)0.014*0.95 (5)0.93 (4)0.50.93 (7)0.89 (3)0.2
    Temporal1.02 (4)1.04 (9)0.61.00 (5)1.03 (10)0.51.00 (4)1.03 (10)0.5
    Parietal0.90 (8)0.90 (10)0.90.95 (9)0.98 (12)0.50.97 (9)1.03 (10)0.2
    Occipital1.17 (14)1.06 (11)0.11.15 (15)1.02 (12)0.11.22 (15)1.13 (11)0.3
    Caudate0.90 (10)0.86 (7)0.30.85 (12)0.79 (10)0.20.83 (12)0.75 (12)0.2
    Putamen0.94 (15)0.89 (3)0.90.82 (14)0.80 (7)0.70.82 (13)0.80 (10)0.7
    Thalamus1.12 (7)1.19 (10)0.21.04 (8)1.08 (12)0.50.98 (8)1.00 (14)0.6
    Cerebellum1.15 (13)1.17 (13)0.81.11 (18)1.12 (17)0.91.11 (16)1.06 (13)0.6
    • ↵* Statistical significance for uncorrected P < 0.05 (unpaired t test between young and old).

    • Mean (% CV) for young (n = 8) and old (n = 7) healthy subjects of CBV in uncorrected images and after 2S-PVC and 3S-PVC.

    • View popup
    TABLE 3

    Cerebral Blood Flow

    RegionUncorrected2S-PVC3S-PVC
    YoungOldPYoungOldPYoungOldP
    Absolute values (mL/min/100 g)
    Frontal49 (14)41 (12)0.025*56 (15)50 (12)0.175 (16)66 (13)0.1
    Temporal43 (14)39 (15)0.248 (14)46 (14)0.563 (15)59 (16)0.4
    Parietal46 (13)40 (13)0.05755 (13)51 (13)0.377 (14)74 (17)0.7
    Occipital49 (10)44 (13)0.08155 (12)51 (12)0.277 (14)74 (13)0.6
    Caudate46 (17)39 (11)0.06851 (17)45 (12)0.162 (17)53 (12)0.086
    Putamen54 (14)49 (12)0.254 (13)49 (13)0.275 (11)66 (13)0.059
    Thalamus54 (15)48 (11)0.157 (15)52 (12)0.266 (16)60 (12)0.2
    Cerebellum52 (14)44 (10)0.027*57 (16)48 (11)0.040*75 (19)62 (12)0.054
    Gray matter48 (13)42 (12)0.05354 (13)49 (12)0.172 (14)66 (13)0.1
    Values normalized to global gray matter
    Frontal1.01 (3)0.97 (2)0.011*1.03 (3)1.02 (2)0.31.03 (3)1.01 (3)0.055
    Temporal0.90 (4)0.94 (5)0.10.88 (5)0.93 (5)0.10.86 (4)0.89 (6)0.3
    Parietal0.96 (3)0.95 (4)0.81.01 (3)1.03 (3)0.21.06 (3)1.13 (6)0.028*
    Occipital1.03 (5)1.06 (5)0.41.01 (5)1.03 (4)0.31.06 (4)1.13 (7)0.032*
    Caudate0.95 (11)0.94 (7)0.80.93 (11)0.92 (4)0.70.86 (11)0.82 (4)0.3
    Putamen1.13 (13)1.16 (5)0.61.00 (12)1.00 (6)0.91.04 (11)1.00 (4)0.4
    Thalamus1.12 (9)1.15 (7)0.51.04 (7)1.05 (6)0.70.91 (7)0.92 (8)0.8
    Cerebellum1.09 (5)1.07 (9)0.61.04 (6)0.99 (10)0.21.05 (10)0.92 (8)0.3
    • ↵* Statistical significance for uncorrected P < 0.05 (unpaired t test between young and old).

    • Mean (% CV) for young (n = 8) and old (n = 7) healthy subjects of CBF in uncorrected images and after 2S-PVC and 3S-PVC.

    • View popup
    TABLE 4

    Percentage Increase in PET Parameters After PVC

    RegionK*VbCBF
    YoungOldPYoungOldPYoungOldP
    2S-PVC
    Frontal19 ± 927 ± 80.08218 ± 824 ± 70.116 ± 724 ± 60.056
    Temporal13 ± 618 ± 70.113 ± 619 ± 40.041*11 ± 617 ± 40.042*
    Parietal23 ± 932 ± 100.08021 ± 832 ± 90.038*20 ± 827 ± 70.081
    Occipital13 ± 619 ± 90.213 ± 616 ± 70.411 ± 615 ± 80.3
    Caudate13 ± 318 ± 60.05112 ± 316 ± 40.112 ± 216 ± 40.029*
    Putamen0 ± 11 ± 10.10 ± 11 ± 20.20 ± 11 ± 10.13
    Thalamus6 ± 18 ± 20.018*7 ± 29 ± 10.006*5 ± 17 ± 10.011*
    Cerebellum9 ± 910 ± 50.710 ± 1014 ± 60.49 ± 149 ± 40.9
    Gray matter16 ± 621 ± 70.215 ± 620 ± 50.09114 ± 618 ± 50.2
    3S-PVC
    Frontal54 ± 1464 ± 190.237 ± 1252 ± 130.036*55 ± 1163 ± 130.2
    Temporal43 ± 948 ± 110.334 ± 848 ± 70.004*45 ± 749 ± 60.3
    Parietal67 ± 1886 ± 220.148 ± 1572 ± 110.005*67 ± 1685 ± 170.054
    Occipital54 ± 1069 ± 170.142 ± 660 ± 130.004*55 ± 868 ± 110.022*
    Caudate34 ± 436 ± 110.626 ± 431 ± 90.236 ± 537 ± 90.8
    Putamen35 ± 630 ± 90.220 ± 726 ± 60.07139 ± 735 ± 60.3
    Thalamus22 ± 524 ± 50.419 ± 526 ± 40.007*22 ± 524 ± 30.4
    Cerebellum42 ± 640 ± 160.731 ± 936 ± 80.342 ± 1040 ± 140.7
    Gray matter50 ± 1057 ± 150.337 ± 950 ± 90.015*51 ± 757 ± 90.1
    • ↵* Statistical significance for uncorrected P < 0.05 (unpaired t test between young and old).

    • Mean ± SD for young (n = 8) and old (n = 7) healthy subjects of percentage increase of K* for 11C-AA, CBF, and Vb after 2S-PVC and 3S-PVC.

PreviousNext
Back to top

In this issue

Journal of Nuclear Medicine: 45 (9)
Journal of Nuclear Medicine
Vol. 45, Issue 9
September 1, 2004
  • Table of Contents
  • About the Cover
  • Index by author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Nuclear Medicine.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Brain Incorporation of 11C-Arachidonic Acid, Blood Volume, and Blood Flow in Healthy Aging: A Study With Partial-Volume Correction
(Your Name) has sent you a message from Journal of Nuclear Medicine
(Your Name) thought you would like to see the Journal of Nuclear Medicine web site.
Citation Tools
Brain Incorporation of 11C-Arachidonic Acid, Blood Volume, and Blood Flow in Healthy Aging: A Study With Partial-Volume Correction
Giampiero Giovacchini, Alicja Lerner, Maria T. Toczek, Charles Fraser, Kaizong Ma, James C. DeMar, Peter Herscovitch, William C. Eckelman, Stanley I. Rapoport, Richard E. Carson
Journal of Nuclear Medicine Sep 2004, 45 (9) 1471-1479;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Brain Incorporation of 11C-Arachidonic Acid, Blood Volume, and Blood Flow in Healthy Aging: A Study With Partial-Volume Correction
Giampiero Giovacchini, Alicja Lerner, Maria T. Toczek, Charles Fraser, Kaizong Ma, James C. DeMar, Peter Herscovitch, William C. Eckelman, Stanley I. Rapoport, Richard E. Carson
Journal of Nuclear Medicine Sep 2004, 45 (9) 1471-1479;
Twitter logo Facebook logo LinkedIn logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSION
    • Acknowledgments
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • PDF

Related Articles

  • THIS MONTH IN JNM
  • PubMed
  • Google Scholar

Cited By...

  • Temporal Cognitive and Brain Changes in Korsakoff Syndrome
  • Age-Related Change in 5-HT6 Receptor Availability in Healthy Male Volunteers Measured with 11C-GSK215083 PET
  • The Synthesis and In Vivo Pharmacokinetics of Fluorinated Arachidonic Acid: Implications for Imaging Neuroinflammation
  • Brain phospholipid arachidonic acid half-lives are not altered following 15 weeks of N-3 polyunsaturated fatty acid adequate or deprived diet
  • Using Cerebral White Matter for Estimation of Nondisplaceable Binding of 5-HT1A Receptors in Temporal Lobe Epilepsy
  • Imaging incorporation of circulating docosahexaenoic acid into the human brain using positron emission tomography
  • Whole-body synthesis-secretion rates of long-chain n-3 PUFAs from circulating unesterified {alpha}-linolenic acid in unanesthetized rats
  • Arachidonic Acid and the Brain
  • Imaging Neuroinflammation in Alzheimer's Disease with Radiolabeled Arachidonic Acid and PET
  • 5-HT1A Receptors Are Reduced in Temporal Lobe Epilepsy After Partial-Volume Correction
  • Google Scholar

More in this TOC Section

  • Feasibility of Ultra-Low-Activity 18F-FDG PET/CT Imaging Using a Long–Axial-Field-of-View PET/CT System
  • Cardiac Presynaptic Sympathetic Nervous Function Evaluated by Cardiac PET in Patients with Chronotropic Incompetence Without Heart Failure
  • Validation and Evaluation of a Vendor-Provided Head Motion Correction Algorithm on the uMI Panorama PET/CT System
Show more Clinical Investigations

Similar Articles

SNMMI

© 2025 SNMMI

Powered by HighWire