Research ArticlePhysics and Instrumentation
Dixon-VIBE Deep Learning (DIVIDE) Pseudo-CT Synthesis for Pelvis PET/MR Attenuation Correction
Angel Torrado-Carvajal, Javier Vera-Olmos, David Izquierdo-Garcia, Onofrio A. Catalano, Manuel A. Morales, Justin Margolin, Andrea Soricelli, Marco Salvatore, Norberto Malpica and Ciprian Catana
Journal of Nuclear Medicine March 2019, 60 (3) 429-435; DOI: https://doi.org/10.2967/jnumed.118.209288
Angel Torrado-Carvajal
1Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
Javier Vera-Olmos
2Medical Image Analysis and Biometry Lab, Universidad Rey Juan Carlos, Madrid, Spain
David Izquierdo-Garcia
1Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
Onofrio A. Catalano
1Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
Manuel A. Morales
1Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
3Department of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts
Justin Margolin
1Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
4Northeastern University, Boston, Massachusetts
Andrea Soricelli
5SDN—Istituto di Ricerca Diagnostica e Nucleare, IRCCS, Naples, Italy; and
6Department of Motor Sciences and Wellness, University of Naples “Parthenope,” Naples, Italy
Marco Salvatore
5SDN—Istituto di Ricerca Diagnostica e Nucleare, IRCCS, Naples, Italy; and
Norberto Malpica
2Medical Image Analysis and Biometry Lab, Universidad Rey Juan Carlos, Madrid, Spain
Ciprian Catana
1Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts

Data supplements
Supplemental Data
Files in this Data Supplement:
In this issue
Journal of Nuclear Medicine
Vol. 60, Issue 3
March 1, 2019
Dixon-VIBE Deep Learning (DIVIDE) Pseudo-CT Synthesis for Pelvis PET/MR Attenuation Correction
Angel Torrado-Carvajal, Javier Vera-Olmos, David Izquierdo-Garcia, Onofrio A. Catalano, Manuel A. Morales, Justin Margolin, Andrea Soricelli, Marco Salvatore, Norberto Malpica, Ciprian Catana
Journal of Nuclear Medicine Mar 2019, 60 (3) 429-435; DOI: 10.2967/jnumed.118.209288
Dixon-VIBE Deep Learning (DIVIDE) Pseudo-CT Synthesis for Pelvis PET/MR Attenuation Correction
Angel Torrado-Carvajal, Javier Vera-Olmos, David Izquierdo-Garcia, Onofrio A. Catalano, Manuel A. Morales, Justin Margolin, Andrea Soricelli, Marco Salvatore, Norberto Malpica, Ciprian Catana
Journal of Nuclear Medicine Mar 2019, 60 (3) 429-435; DOI: 10.2967/jnumed.118.209288
Jump to section
Related Articles
Cited By...
- Generative Adversarial Network-Enhanced Ultra-Low-Dose [18F]-PI-2620 {tau} PET/MRI in Aging and Neurodegenerative Populations
- Evaluation of Deep Learning-Based Approaches to Segment Bowel Air Pockets and Generate Pelvic Attenuation Maps from CAIPIRINHA-Accelerated Dixon MR Images
- PET/MRI, Part 2: Technologic Principles
- Machine Learning in Nuclear Medicine: Part 2--Neural Networks and Clinical Aspects
- Summary of the First ISMRM-SNMMI Workshop on PET/MRI: Applications and Limitations
- Intelligent Imaging: Artificial Intelligence Augmented Nuclear Medicine