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Whole-body attenuation correction (AC) is still challenging in com-

bined PET/MR scanners. We describe Dixon-VIBE Deep Learning

(DIVIDE), a deep-learning network that allows synthesizing pelvis
pseudo-CT maps based only on the standard Dixon volumetric

interpolated breath-hold examination (Dixon-VIBE) images currently

acquired for AC in some commercial scanners. Methods: We pro-

pose a network that maps between the four 2-dimensional (2D)
Dixon MR images (water, fat, in-phase, and out-of-phase) and their

corresponding 2D CT image. In contrast to previous methods, we

used transposed convolutions to learn the up-sampling parameters,

we used whole 2D slices to provide context information, and we
pretrained the network with brain images. Twenty-eight datasets

obtained from 19 patients who underwent PET/CT and PET/MR

examinations were used to evaluate the proposed method. We
assessed the accuracy of the μ-maps and reconstructed PET

images by performing voxel- and region-based analysis compar-

ing the SUVs (in g/mL) obtained after AC using the Dixon-VIBE

(PETDixon), DIVIDE (PETDIVIDE), and CT-based (PETCT) methods. Ad-
ditionally, the bias in quantification was estimated in synthetic le-

sions defined in the prostate, rectum, pelvis, and spine. Results:
Absolute mean relative change values relative to CT AC were lower

than 2% on average for the DIVIDE method in every region of in-
terest except for bone tissue, where it was lower than 4% and

6.75 times smaller than the relative change of the Dixon method.

There was an excellent voxel-by-voxel correlation between PETCT
and PETDIVIDE (R2 5 0.9998, P , 0.01). The Bland–Altman plot be-

tween PETCT and PETDIVIDE showed that the average of the dif-

ferences and the variability were lower (mean PETCT –PETDIVIDE

SUV, 0.0003; PETCT –PETDIVIDE SD, 0.0094; 95% confidence interval,
[−0.0180,0.0188]) than the average of differences between PETCT and

PETDixon (mean PETCT –PETDixon SUV, 0.0006; PETCT –PETDixon SD,

0.0264; 95% confidence interval, [−0.0510,0.0524]). Statistically sig-

nificant changes in PET data quantification were observed between
the 2 methods in the synthetic lesions, with the largest improvement

in femur and spine lesions. Conclusion: The DIVIDE method can ac-

curately synthesize a pelvis pseudo-CT scan from standard Dixon-VIBE
images, allowing for accurate AC in combined PET/MR scanners. Ad-

ditionally, our implementation allows rapid pseudo-CT synthesis, mak-

ing it suitable for routine applications and even allowing retrospective

processing of Dixon-VIBE data.
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The evolution of PET and MRI into complementary in vivo
molecular imaging techniques has generated increased interest in

the development of combined PET/MRI systems (1). However,

many challenges have slowed the adoption of the recently devel-

oped simultaneous PET/MR scanners (2). The most important

methodologic challenge for whole-body applications is attenua-

tion correction (AC), which is critical for quantitative studies and

even qualitative data interpretation.
In the case of the commercially available PET/MR scanners,

attenuation maps (m-maps) are typically generated from the MR

data acquired using a Dixon volumetric interpolated breath-hold

examination (Dixon-VIBE) sequence or a liver acquisition with

volume acceleration-flexible (LAVA-Flex) sequence. Four tissue

classes (background, fat, lung, and soft tissue) are segmented from

these data, and discrete linear attenuation coefficients are assigned

to each class (3). The major limitation of this method is that it

misclassifies bone as fat tissue, leading to substantial bias in the

PET measurements (4), particularly in the pelvis.
Most of the early efforts in MR-based AC have focused on the

head (5), differing mainly in the type of semantic representation

used to describe the image data (i.e., templates or atlases (6,7),

segmentation (8,9), or reconstruction (10)). It has recently been

shown that several of the template- or atlas-based methods are

accurate (11). However, their translation to whole-body applica-

tions is still challenging. For example, the large intersubject var-

iability (in terms of anatomy, size, body mass index, pathology)

makes the generation of atlases and templates that adequately

describe the population difficult. Furthermore, using these meth-

ods in other body regions (e.g., pelvis) requires a combination of

rigid and nonrigid registration. Consequently, these methods

showed limited accuracy when applied to whole-body AC (12).

In this context, Leynes et al. presented a hybrid zero–echo-time

Dixon MR-based AC method that included bone density estimates

obtained by converting the zero–echo-time signal intensity to

Hounsfield units using a continuous 2-segment piecewise linear
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model (13). However, this method relies on a manual correction
step during bone segmentation.
As an alternative, deep-learning approaches can be used to

generate m-maps from the MR data. Deep-learning approaches

based on convolutional neural networks have already shown tre-

mendous potential for image classification (14), image segmenta-

tion (15–17), and image synthesis (18,19), becoming popular in

medical imaging (20–24).
Several deep-learning–based approaches have already been pro-

posed for MR-based AC. Ribeiro et al. proposed a feed-forward neural

network to directly output a continuous-valued head m-map by non-

linear regression of several ultrashort-echo-time images and the tem-

plate-based AC map (25). Very recently, Leynes et al. also proposed a

multiparametric MRI model to generate pelvis pseudo-CT maps based

on Dixon MRI and proton-density–weighted zero-echo-time MR

images (26). Although the preliminary results obtained with these

methods are encouraging, they have the disadvantage of relying on

specialized MR sequences that require additional acquisition times.
In this paper, we describe a Dixon-VIBE Deep Learning

(DIVIDE) method to synthesize pelvis pseudo-CT maps based only

on the standard Dixon-VIBE images routinely acquired for AC

purposes on commercial scanners. Our network maps between

the 2-dimensional (2D) Dixon MRI slices and their corresponding

CT slices. The network architecture is similar to one previously

proposed (15,16,21), but instead of using unpooling to up-sample

the features, we use transposed convolutions to learn the up-sam-

pling parameters. In contrast to previously proposed patch-based

methods, we used the whole 2D slice to provide context informa-

tion. We showed the PET quantification bias to be reduced when

using DIVIDE compared with the standard Dixon-VIBE approach.

MATERIALS AND METHODS

Data Acquisition

CT and PET/MR images of 13 colorectal and 6 prostate cancer

patients (mean age, 61.42 6 10.63 y; range, 44–80 y; 12 men and 7

women; mean body mass index, 22.30 6 2.88; range, 17.43–29.73)

were retrospectively analyzed. Additionally, follow-up images for 9 of

the colorectal cancer patients were also included (substantial anatomy

and body mass index changes were noted after treatment/surgery). All

patients underwent same-day PET/CT and PET/MR studies following

the routine protocols. No obvious artifacts were observed in the CT or

MR images. All patients gave written informed consent, and the local

Institutional Review Board approved the study.

CT Data. Low-dose CT images were acquired on a Discovery PET/CT
710 scanner (GE Healthcare) with a matrix of 512 · 512, resolution of

1.37 · 1.37 mm, slice thickness of 3.75 mm, pitch of 0.94 mm, acqui-

sition angle of 0, voltage of 120 kV, and tube current of 150 mA.
PET/MR Data. The PET/MR examinations were performed 66.60 6

22.83 min after the PET/CT scans using the Biograph mMR scanner
(Siemens Healthineers). PET emission data were acquired for 16.1 6
10.0 min (range, 7–35 min) and a variable number of bed positions (1–5)
120.06 36.8 min after administration of 378.16 64.1 MBq of 18F-FDG

(16 subjects, 25 scans) or 291.06 50.5 MBq of 18F-choline (3 subjects, 3
scans; Supplemental Table 1, available at http://jnm.snmjournals.org).

The standard Dixon-VIBE sequence (repetition time, 3.6 ms; first echo
time, 1.23 ms; second echo time, 2.46 ms; acquisition matrix, 192 · 128;

128 slices per bed position; voxel size, 2.6 · 2.6 · 3.1 mm [in-plane
resolution · slice thickness]; flip angle, 10�; acquisition time, 18 s)

was run for AC purposes. Other MR sequences were additionally run
as part of the clinical protocols for prostate and colorectal cancer,

respectively.

Data Preprocessing

Images were preprocessed as follows. First, MRI bias was corrected
using the N4ITK MRI bias correction module in 3D Slicer 4 (27). Given

the large field of view, we set the advanced parameters to 3 levels of
resolution with 500, 400, and 300 iterations, respectively, and a conver-

gence threshold of 0.00001 to ensure proper modeling of the inhomo-
geneity bias. Then, intrasubject rigid and nonrigid registration of the MR

and CT data was performed using SPM8 software (28) and the Elastix
package (29). Finally, reslicing and cropping of the data to a fixed 50 ·
50 · 50 cm field of view with 2 · 2 mm pixels and a 1-mm slice
thickness was performed to ensure spatial homogeneity among subjects.

DIVIDE Pseudo-CT Synthesis

Figure 1 provides a schematic representation of the convolutional-
deconvolutional neural network implemented in TensorFlow (30) that

takes four 2D images as input—water, fat, in-phase, and out-of-phase
Dixon-VIBE images—and computes the corresponding pseudo-CT slice.

The encoder network consists of 13 convolutional layers, correspond-
ing to the first 13 convolutions of the Visual Geometry Group network

(31), that convert the input MR images into a multidimensional feature
representation. This is followed by a decoder network, which performs

several up-samplings of the features to generate the final pseudo-CT
slice. Shortcuts between the layers of the encoder and the decoder were

created to use features from different scales in the decoding step.
Each layer of the encoder performed several convolutions with a

3 · 3 filter bank to produce a set of feature maps. After every convo-
lution, a batch normalization was performed (32) and an elementwise

rectified linear unit was applied. At the end of each encoding layer, a
max-pooling with a 2 · 2 window and stride 2 was performed, result-

ing in a subsampling by a factor of 2 (33). After every max-pooling,
the number of filters was doubled. This step introduced larger context-

information in the resulting feature map.
Increasing this context information resulted

in a loss of spatial information, which is the
reason for adding the shortcuts between the

layers of the encoder and the decoder.
The decoder network comprised 10 con-

volutions and 4 transposed convolutions.
Transposed convolutions (33) with a kernel

of 3 · 3 and stride 2 were used to up-sample
the feature map by a factor of 2. After every

convolution, a batch normalization was per-

formed and a rectified linear unit was applied.
A final 1 · 1 convolution was performed to

obtain the Hounsfield units.
The mean absolute error between CT and

pseudo-CT slices was used as loss function.

FIGURE 1. Schematic representation of our network architecture. Our implementation in Ten-

sorFlow processes in-phase and out-of-phase fat and water 2D Dixon slices to generate pseudo-

CT slice. RELU 5 rectified linear unit.
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The mean absolute error was calculated only for the voxels within the
body using a mask generated from the Dixon images.

To avoid overfitting, we performed data augmentation by applying
random displacements of 5 voxels and a random flip in the slices,

similarly to Han (21). Additionally, we used a dropout layer (32) with

probability 0.5 before the first transposed con-

volution of the decoder, because the most in-
formative feature maps are calculated in that

part of the network.
The training optimization was performed

using root-mean-square propagation. Instead
of initializing the convolutional neural network

weights with a noise distribution, the network
was pretrained using MR T1-weighted brain

images and their corresponding CT slices (6).
Subsequently, we performed the training with

the pelvis database, which contained between
9,000 and 11,000 samples, depending on the

cross-validation iteration, for 80,000 iterations
using a batch of 10 samples, resulting in 70

epochs to converge.

μ-Map Generation and PET

Image Reconstruction

The pseudo-CT images were converted to
linear attenuation coefficients using the bi-

linear transformation (34). The corresponding m-maps were denoted
mDIVIDE and mCT. Gaussian smoothing with a kernel of 4 mm in full

width at half maximum was applied to match the PET spatial reso-
lution. Additionally, the Dixon-VIBE–based m-maps (mDixon) (9)

were available. Air pockets in all the resulting m-maps (mCT, mDixon,
and mDIVIDE) were filled as soft tissue to

avoid any bias that might result from differ-
ences caused by their displacement between

the acquisitions.
The PET volumes were reconstructed

using the standard 3-dimensional ordinary
Poisson ordered-subset expectation-maximization

algorithm with 21 subsets and 3 iterations,

correcting for normalization, random prompts,
background, dead time, photon attenuation,

and scatter using the e7tools software provided
by the manufacturer. Spatial smoothing was

performed after image reconstruction using a
gaussian filter of 4 mm in full width at half max-

imum. The final volumes were reconstructed into
a matrix of 344 · 344 voxels of 2.0863 ·
2.0863 mm in plane and a 2.0313-mm slice
thickness and were denoted PETDIVIDE, PETCT,

and PETDixon.
A k-fold cross-validation (k 5 4) was per-

formed to evaluate the proposed method using
28 Dixon and CT volume pairs from 19 sub-

jects (using the subjects instead of the pairs,
meaning the training set contained 15 subjects

and the remaining 4 were part of the test set in
each iteration). All pairs from the same subject

were always in the same collection.

Data Analysis

Voxel- and region-based analyses were per-
formed to assess the accuracy of the m-maps

and reconstructed PET images. Only voxels in-
cluded in the pelvic area where the different

m-maps overlapped were used for comparison.
Bland–Altman plots, bias, and variability Pear-

son correlation coefficients were calculated for
all comparisons. Absolute relative changes

(RCs) were defined as follows:

FIGURE 3. Sagittal, coronal, and axial μ-maps of subject 02_01 (Supplemental Table 1)

obtained using 3 different methods—μCT, μDixon, and μDIVIDE—as well as distribution of RC of

μDixon and μDIVIDE compared with μCT.

FIGURE 2. Examples of progression of pseudo-CT generation during training. Columns repre-

sent output of network after a certain number of training iterations. Corresponding real CT used

as ground truth in shown in rightmost column.
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RC IXð%Þ 5 100
jIX 2 IGSj

IGS
; Eq. 1

where X is the AC method (DIVIDE or Dixon); IX corresponds to either the

m-maps (mDIVIDE or mDixon) or the PET images (PETDIVIDE or PETDixon);

and IGS corresponds to the gold standard image (mCT or PETCT for m-map

and PET comparisons, respectively). Nonabsolute RCs were also calculated.
Regions of interest (ROIs) were defined as segmented tissues (fat,

soft tissue, and bone) obtained by thresholding the Hounsfield units

from the patient-specific CT image. Mean and maximum SUV normal-

ized by weight was calculated for all the patients; all SUVs reported

in this article are in g/mL.
Additionally, we simulated synthetic lesions using the PETSTEP

approach (35). Briefly, 1-cm-diameter spheric lesions were defined in

the prostate, rectum, pelvis, and spine. Using the original recon-

structed PET images, new lesion images were generated by increasing

the activity within the lesion 5-fold and setting the background

to zero. Lesion sinograms were generated from these images as

described by Berthon et al. (35), except that random and scatter events
due to the lesion were neglected. The lesion and preexisting patient

sinograms were combined and reconstructed as previously described.

Statistical Tests

Mean 6 SD for m-maps and reconstructed PET images were com-

puted for all subjects. Paired-sample Wilcoxon signed rank-tests were
performed to assess whether there were differ-

ences when correcting for attenuation using the
CT-based (PETCT) and theMR-based (PETDIVIDE
and PETDixon) methods. The same tests were
performed for the analysis of the synthetic le-

sions. Statistical significance was considered
when the P value was lower than 0.05.

RESULTS

The Hounsfield unit error was lower
when using the pretrained weights from
the brain database as opposed to initializing
them from noise, showing a faster learning
in the initial epochs and a slightly smaller
final error (Supplemental Fig. 1). The number
of training iterations also had an effect on the
progressive pseudo-CT improvement (e.g.,
better bone delineation) at different stages
(Fig. 2). Once the network is trained, the
synthesis of a complete volume takes about
2 min using a NVIDIA Tesla K40 GPU.

Figure 3 shows the m-maps obtained using
the 3 methods and the corresponding RC
maps for a representative subject, demonstrat-
ing excellent correlation between mDIVIDE and
mCT and noticeable misclassification of bone
tissues in mDixon. The bone contours were ac-
curately visualized in mDIVIDE, and the shape
of the pelvis was estimated well despite the
anatomic complexity and large interpatient
variability.

The results of the quantitative voxel- and
ROI-based analyses for all subjects are
summarized in Table 1. Absolute mean
RCs were lower for DIVIDE than for the
Dixon-VIBE–based method in every ROI.

FIGURE 4. Sagittal, coronal, and axial PET images of subject 02_01 (Supplemental Table 1)

obtained using 3 different AC methods—PETCT, PETDixon and PETDIVIDE—as well as distribution

of RC of PETDixon and PETDIVIDE compared with PETCT. Arrows point to areas where PETDixon
exhibits noticeable PET signal underestimation.

TABLE 1
Voxel- and ROI-Based RCs for μ-Maps in Whole-Pelvis Area

RC μDIVIDE μDixon

Voxel-based

Absolute 2.36 ± 3.15 4.73 ± 6.31

Nonabsolute 0.04 ± 3.94 −0.03 ± 7.89

ROI-based

Fat

Absolute 2.19 ± 2.71 4.05 ± 5.03

Nonabsolute 0.88 ± 3.36 1.90 ± 6.17

Soft-tissue

Absolute 2.25 ± 2.96 4.18 ± 4.76

Nonabsolute −0.39 ± 3.70 −0.01 ± 6.36

Bone

Absolute 7.08 ± 6.07 24.05 ± 8.66

Nonabsolute −4.14 ± 8.32 −24.05 ± 8.66

Data are mean percentage ± SD for all subjects.

432 THE JOURNAL OF NUCLEAR MEDICINE • Vol. 60 • No. 3 • March 2019



Particularly, bone tissue demonstrated a statistically significant 3.4
times reduction of bias for DIVIDE. Nonabsolute values showed
a similar trend. The SDs were almost 2 times smaller for DIVIDE
than for the Dixon-VIBE–based method.
The PETDIVIDE images more closely resembled the PETCT im-

ages than the PETDixon images (Fig. 4). Some deviations could still
be appreciated in the PETDIVIDE images, with the highest errors in

the pelvis being near bone boundaries.
However, the errors were lower than 2%
on average.
There was an excellent correlation between

PETCT and PETDIVIDE (R2 5 0.9998, P ,
0.01; Fig. 5). The Bland–Altman plot be-
tween PETCT and PETDIVIDE showed that

the mean differences and variability were
lower (mean PETCT–PETDIVIDE SUV,

0.0003; PETCT–PETDIVIDE SD, 0.0094;
95% confidence interval, [20.0180,0.0188])

than the mean differences and variability
between PETCT and PETDixon (mean

PETCT–PETDixon SUV, 0.0006; PETCT–
PETDixon SD, 0.0264; 95% confidence inter-
val, [20.0510,0.0524]); the difference be-

tween the proposed method and the ground
truth tended to decrease as the average in-

creased. The comparison of the Bland–Alt-
man plots for the Dixon-VIBE–based and

DIVIDE approaches showed that the pro-
posed method is less biased.
ROI analysis showed that absolute mean

RCs were lower than 2% for the DIVIDE
method in every nonbone ROI (Table 2). A

6.75-times bias reduction in bone tissue
was observed for DIVIDE compared with

the Dixon-VIBE–based method, a differ-
ence that was statistically significant. Again, the nonabsolute val-

ues showed a similar trend, and a factor of 3.5 reduction in
variability was observed in all cases considered, suggesting that

the method is more precise.
Figure 6 shows the results of the quantitative ROI-based anal-

yses for the synthetic lesions. Statistically significant differences

between the Dixon-VIBE–based and DIVIDE methods were ob-
served when comparing the absolute mean RCs (Fig. 6A). Prostate
lesions demonstrated a 6.9-times bias reduction for DIVIDE

compared with the Dixon-VIBE–based method, whereas rectum
lesions showed a 2.9-times bias reduction. As expected, the larg-

est reduction in bias was observed for DIVIDE in the case of bone
lesions. Femur and spine lesions revealed a 7.8- and a 2.4-times

bias reduction, respectively. The improved accuracy compared with
the Dixon-VIBE–based method was also evident when comparing

the nonabsolute mean RCs (Fig. 6B).

DISCUSSION

We have developed DIVIDE, a pelvis deep-learning pseudo-CT
synthesis method, as a first step in a ‘‘DIVIDE and conquer’’
approach that could eventually prove successful in addressing

the whole-body PET/MR AC challenge. DIVIDE avoids the over-
simplification of most MR segmentation–based approaches and
the limitations of atlas-based techniques. The qualitative (Figs. 4

and 5) and quantitative (Tables 1 and 2) analyses provided results
similar to those obtained using the current standard (CT). The low

RCs indicated that DIVIDE allows estimation of the patient-
specific CT substantially better than the Dixon-VIBE–based one.
Some of the remaining differences observed at the bone

boundaries could be due to inaccuracies in the MR–CT intrasub-
ject registration, which is complicated by several factors: differ-

ences in patient positioning between the CT and MR scans, the

TABLE 2
Voxel- and ROI-Based RCs for PET Data in Whole-Pelvis

Area

RC PETDIVIDE PETDixon P*

Voxel-based

Absolute 1.83 ± 2.36 6.33 ± 7.88 ,0.01

Nonabsolute 0.06 ± 2.93 −0.41 ± 10.06 0.1866

ROI-based

Fat

Absolute 1.70 ± 2.03 4.49 ± 5.05 ,0.01

Nonabsolute 0.27 ± 2.59 1.48 ± 6.51 ,0.01

Soft-tissue

Absolute 1.83 ± 2.42 6.71 ± 7.48 ,0.01

Nonabsolute −0.03 ± 2.98 −0.34 ± 10.00 0.6653

Bone

Absolute 3.75 ± 3.90 25.34 ± 12.51 ,0.01

Nonabsolute −0.95 ± 5.09 −25.11 ± 12.71 ,0.01

*Paired-sample Wilcoxon signed-rank test.

Data are mean percentage ± SD for all subjects.

FIGURE 5. Voxel-by-voxel correlation plots between PETCT and PETDIVIDE (A) and between

PETCT and PETDixon (B), as well as Bland–Altman plots between PETCT and PETDIVIDE (C) and

between PETCT and PETDixon (D), for all subjects. Gray scale bars show number of voxels within

each element of 2D histogram. SUV units are g/mL.
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complex anatomy of the pelvis, nonrigid displacement of the or-

gans between acquisitions, and high freedom of movement of the

bone structures. Additionally, there were mismatches between the

MR and CT air-pocket locations; however, air pockets generated in

our approach showed an acceptable correlation with the anatomy in

the MR image, which is sometimes impaired by the information

present in the CT image (Supplemental Fig. 2). Bland–Altman plots

for the PET images also suggest that DIVIDE is closer to the CT

image than the Dixon-VIBE–based method. The narrow 95% con-

fidence interval for DIVIDE suggests it is more accurate than the

Dixon-VIBE–based approach.
Several other deep-learning methods have previously been

described for head (21,36) and, very recently, pelvis AC (26).

Our findings agree with those reported by Leynes et al. (26). Their

method (PETZeDD [zero-echo-time and Dixon deep pseudo-CT])

largely corrected underestimation of uptake within and around

bony regions compared with the Dixon-based method (PETDixon),

in line with the improvement we showed in this paper. Also, they

reported a reduction of root-mean-square error from 6.10% for

PETDixon to 2.85% for PETZeDD within soft-tissue regions,

whereas we report a change in RC from 6.71% for PETDixon to

1.83% for PETDIVIDE in the same region. The underestimation bias

was reduced by a factor of 3 and the SD was reduced by a factor of

2 in the PETZeDD; we reduced that bias by a factor of 11.3 and the

SD by a factor of 3.4 in the PETDIVIDE.
Compared with the ZeDD-CT approach, the DIVIDE method

presents several advantages: relying on only the standard Dixon-

VIBE images currently used for AC, decreasing the scanning time,

and allowing for retrospective generation of m-maps from already

acquired Dixon-VIBE data. Moreover, DIVIDE is completely au-

tomated and uses the whole image (as opposed to patches) to

reduce potential boundary artifacts. On the other hand, the ZeDD-

CT approach (26) might be more accurate because it can extract

more information about air pockets from the zero-echo-time image.
Our study had several limitations. First, our training set was

relatively small and comprised only subjects above 44 y old. Further

improvement of the current model could be achieved by increasing

the number of training sets and fine-tuning the bone and weight

parameters or training the network with the new higher-resolution

CAIPIRINHA-3-dimensional-Dixon-VIBE sequence. Second, as our

subjects were above 44 y old, the direct application of the proposed

method to pediatric patients is difficult because of differences in

anatomy and bone densities. Third, we have assessed the impact of
our method on the quantification of only a limited number of
synthetic pelvic lesions. Finally, although we obtained encouraging
results for the subjects who underwent repeated examinations, the
reproducibility of our method needs to be properly assessed.

CONCLUSION

We described the development and initial validation of DIVIDE,
a deep-learning approach to estimate pelvis pseudo-CT from stan-
dard Dixon-VIBE images to be used for AC in integrated PET/MRI
scanners. We showed that the proposed method introduces only
minimal bias compared with the CT-based approach, the current
standard for AC.
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