Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Ahead of print
    • Past Issues
    • JNM Supplement
    • SNMMI Annual Meeting Abstracts
    • Continuing Education
    • JNM Podcasts
  • Subscriptions
    • Subscribers
    • Institutional and Non-member
    • Rates
    • Journal Claims
    • Corporate & Special Sales
  • Authors
    • Submit to JNM
    • Information for Authors
    • Assignment of Copyright
    • AQARA requirements
  • Info
    • Reviewers
    • Permissions
    • Advertisers
  • About
    • About Us
    • Editorial Board
    • Contact Information
  • More
    • Alerts
    • Feedback
    • Help
    • SNMMI Journals
  • SNMMI
    • JNM
    • JNMT
    • SNMMI Journals
    • SNMMI

User menu

  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Nuclear Medicine
  • SNMMI
    • JNM
    • JNMT
    • SNMMI Journals
    • SNMMI
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Journal of Nuclear Medicine

Advanced Search

  • Home
  • Content
    • Current
    • Ahead of print
    • Past Issues
    • JNM Supplement
    • SNMMI Annual Meeting Abstracts
    • Continuing Education
    • JNM Podcasts
  • Subscriptions
    • Subscribers
    • Institutional and Non-member
    • Rates
    • Journal Claims
    • Corporate & Special Sales
  • Authors
    • Submit to JNM
    • Information for Authors
    • Assignment of Copyright
    • AQARA requirements
  • Info
    • Reviewers
    • Permissions
    • Advertisers
  • About
    • About Us
    • Editorial Board
    • Contact Information
  • More
    • Alerts
    • Feedback
    • Help
    • SNMMI Journals
  • View or Listen to JNM Podcast
  • Visit JNM on Facebook
  • Join JNM on LinkedIn
  • Follow JNM on Twitter
  • Subscribe to our RSS feeds
Research ArticleCLINICAL INVESTIGATIONS

Comparison of 2-Dimensional and 3-Dimensional Acquisition for 18F-FDG PET Oncology Studies Performed on an LSO-Based Scanner

Martin A. Lodge, Ramsey D. Badawi, Richard Gilbert, Pablo E. Dibos and Bruce R. Line
Journal of Nuclear Medicine January 2006, 47 (1) 23-31;
Martin A. Lodge
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ramsey D. Badawi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Richard Gilbert
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Pablo E. Dibos
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Bruce R. Line
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Abstract

Three-dimensional (3D) PET acquisition has the potential to reduce image noise but the advantage of 3D PET for studies outside the brain has not been well established. To compare the performance of 2-dimensional (2D) and 3D acquisition for whole-body 18F-FDG applications, a series of patient studies were performed using a lutetium oxyorthosilicate (LSO)-based tomograph. Methods: Comparative 2D and 3D images were acquired for 27 oncology patients using an LSO-based tomograph. Data acquisition (350–650 keV, 6 ns) started 99 ± 12 min (mean ± SD) after injection of 624 ± 76 MBq 18F-FDG. Bias caused by tracer redistribution and decay was eliminated by acquiring dynamic data over a single-bed position using a protocol that alternated between septa-in and septa-out modes (2D, 3D, 2D, 3D, 2D, 3D). Frames were combined to form 8 statistically independent sinograms: four 2D replicates (105 s) and four 3D replicates (90 s). The different frame durations in 2D and 3D compensated for the different number of overlapping bed positions required for an 85-cm whole-body study. Images were reconstructed with either 2D or fully 3D ordered-subsets expectation maximization (2 iterations and 8 subsets; 2D 6-mm gaussian, 3D 5- and 6-mm gaussian). Image target-to-background ratio was assessed by dividing the lesion maximum by the mean within a neighboring background region. Image noise was assessed by applying background regions of interest to the replicate images and calculating the within-patient coefficient of variation. Results: The difference in target-to-background ratio between the 2D and 3D images, when they were filtered with 6-mm and 5-mm gaussian filters, respectively, was not highly statistically significant (P = 0.16). The mean ratio of 3D to 2D image values was 0.94 with 95% limits of agreement of 0.63–1.41. The within-patient coefficients of variation for the 2D and 3D images were 13% ± 15% and 9% ± 10%, respectively (P = 0.0005). Conclusion: Under conditions of matched target to-to-background ratios, the 3D mode was found to produce images with significantly less variability than the 2D mode. These data provide support for the use of 3D acquisition with LSO detectors to reduce scan times in whole-body 18F-FDG applications.

  • PET
  • 2D
  • 3D
  • LSO
  • acquisition
View Full Text
PreviousNext
Back to top

In this issue

Journal of Nuclear Medicine: 47 (1)
Journal of Nuclear Medicine
Vol. 47, Issue 1
January 2006
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Nuclear Medicine.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Comparison of 2-Dimensional and 3-Dimensional Acquisition for 18F-FDG PET Oncology Studies Performed on an LSO-Based Scanner
(Your Name) has sent you a message from Journal of Nuclear Medicine
(Your Name) thought you would like to see the Journal of Nuclear Medicine web site.
Citation Tools
Comparison of 2-Dimensional and 3-Dimensional Acquisition for 18F-FDG PET Oncology Studies Performed on an LSO-Based Scanner
Martin A. Lodge, Ramsey D. Badawi, Richard Gilbert, Pablo E. Dibos, Bruce R. Line
Journal of Nuclear Medicine Jan 2006, 47 (1) 23-31;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Comparison of 2-Dimensional and 3-Dimensional Acquisition for 18F-FDG PET Oncology Studies Performed on an LSO-Based Scanner
Martin A. Lodge, Ramsey D. Badawi, Richard Gilbert, Pablo E. Dibos, Bruce R. Line
Journal of Nuclear Medicine Jan 2006, 47 (1) 23-31;
Twitter logo Facebook logo LinkedIn logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSION
    • Acknowledgments
    • References
  • Figures & Data
  • Info & Metrics
  • PDF

Related Articles

  • THIS MONTH IN JNM
  • PubMed
  • Google Scholar

Cited By...

  • High Reproducibility of Tumor Hypoxia Evaluated by 18F-Fluoromisonidazole PET for Head and Neck Cancer
  • Scan-Time Reduction Using Noise-Matched Images in 2- and 3-Dimensional Bismuth Germanate PET/CT: Clinical Study in Head and Neck Cancer
  • Deep-Inspiration Breath-Hold PET/CT of Lung Cancer: Maximum Standardized Uptake Value Analysis of 108 Patients
  • Dual-Modality Imaging: Combining Anatomy and Function
  • Impact of Acquisition Geometry, Image Processing, and Patient Size on Lesion Detection in Whole-Body 18F-FDG PET
  • Absolute Quantification of Myocardial Blood Flow with 13N-Ammonia and 3-Dimensional PET
  • Google Scholar

More in this TOC Section

  • Cardiac Presynaptic Sympathetic Nervous Function Evaluated by Cardiac PET in Patients with Chronotropic Incompetence Without Heart Failure
  • Validation and Evaluation of a Vendor-Provided Head Motion Correction Algorithm on the uMI Panorama PET/CT System
  • Efficacy and Safety of 124I-MIBG Dosimetry-Guided High-Activity 131I-MIBG Therapy of Advanced Pheochromocytoma or Neuroblastoma
Show more Clinical Investigations

Similar Articles

SNMMI

© 2025 SNMMI

Powered by HighWire