Abstract
We present the characterization of a compact magnetic resonance (MR) compatible positron emission tomography (PET) insert for simultaneous pre-clinical PET/MR imaging. While specifically designed with the strict size constraint to fit inside the 114 mm inner diameter of the BGA-12S gradient coil used in the Bruker 70/20 and 94/20 series of small animal MR imaging (MRI) systems, the insert can be easily installed in any appropriate MRI scanner or used as a stand-alone PET system. Methods: The insert is made from a ring of 16 detector-blocks each made from depth-of-interaction capable dual-layer-offset arrays of cerium-doped lutetium-yttrium oxyorthosilicate crystals read out by silicon photomultiplier (SiPM) arrays. Scintillator crystal arrays are made from 22×10 / 21×9 crystals in the bottom/top layers with 6/4 mm layer thicknesses, arranged with a 1.27 mm pitch, resulting in a useable field of view (FOV) 28 mm long and ~55 mm wide. Results: Spatial resolution ranges from 1.17 to 1.86 mm full-width-at-half-maximum (FWHM) in the radial direction from a radial offset of 0 to 15 mm. With a 300-800 keV energy window, peak sensitivity is 2.2% and noise-equivalent count rate (NECR) from a mouse-sized phantom at 3.7 MBq is 11.1 kcps and peaks at 20.8 kcps at 14.5 MBq. Phantom imaging shows that feature sizes as low as 0.7 mm can be resolved. 18F-fluorodeoxyglucose (18F-FDG) PET/MR images of mouse and rat brains show no signs of inter-modality interference, and can excellently resolve substructures within the brains. Conclusion: Due to excellent spatial resolvability and lack of intermodality interference, this PET insert will serve as a useful tool for pre-clinical PET/MR.
- Copyright © 2017 by the Society of Nuclear Medicine and Molecular Imaging, Inc.