Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Ahead of print
    • Past Issues
    • JNM Supplement
    • SNMMI Annual Meeting Abstracts
    • Continuing Education
    • JNM Podcasts
  • Subscriptions
    • Subscribers
    • Institutional and Non-member
    • Rates
    • Journal Claims
    • Corporate & Special Sales
  • Authors
    • Submit to JNM
    • Information for Authors
    • Assignment of Copyright
    • AQARA requirements
  • Info
    • Reviewers
    • Permissions
    • Advertisers
  • About
    • About Us
    • Editorial Board
    • Contact Information
  • More
    • Alerts
    • Feedback
    • Help
    • SNMMI Journals
  • SNMMI
    • JNM
    • JNMT
    • SNMMI Journals
    • SNMMI

User menu

  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Nuclear Medicine
  • SNMMI
    • JNM
    • JNMT
    • SNMMI Journals
    • SNMMI
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Journal of Nuclear Medicine

Advanced Search

  • Home
  • Content
    • Current
    • Ahead of print
    • Past Issues
    • JNM Supplement
    • SNMMI Annual Meeting Abstracts
    • Continuing Education
    • JNM Podcasts
  • Subscriptions
    • Subscribers
    • Institutional and Non-member
    • Rates
    • Journal Claims
    • Corporate & Special Sales
  • Authors
    • Submit to JNM
    • Information for Authors
    • Assignment of Copyright
    • AQARA requirements
  • Info
    • Reviewers
    • Permissions
    • Advertisers
  • About
    • About Us
    • Editorial Board
    • Contact Information
  • More
    • Alerts
    • Feedback
    • Help
    • SNMMI Journals
  • View or Listen to JNM Podcast
  • Visit JNM on Facebook
  • Join JNM on LinkedIn
  • Follow JNM on Twitter
  • Subscribe to our RSS feeds
Research ArticleState of the Art

Artificial Intelligence for PET and SPECT Image Enhancement

Vibha Balaji, Tzu-An Song, Masoud Malekzadeh, Pedram Heidari and Joyita Dutta
Journal of Nuclear Medicine January 2024, 65 (1) 4-12; DOI: https://doi.org/10.2967/jnumed.122.265000
Vibha Balaji
1Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Tzu-An Song
1Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Masoud Malekzadeh
1Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Pedram Heidari
2Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Joyita Dutta
1Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Article Figures & Data

Figures

  • Tables
  • FIGURE 1.
    • Download figure
    • Open in new tab
    • Download powerpoint
    FIGURE 1.

    PRISMA flow diagram demonstrating selection strategy of research articles included in review.

  • FIGURE 2.
    • Download figure
    • Open in new tab
    • Download powerpoint
    FIGURE 2.

    Categorywise split of selected articles reviewed here.

  • FIGURE 3.
    • Download figure
    • Open in new tab
    • Download powerpoint
    FIGURE 3.

    Typical supervised framework for PET image denoising using deep learning with training phase that minimizes loss function and validation phase that evaluates deep-learning model’s performance. conv = convolution; ReLU = rectified linear unit; maxpool = maximum pooling; up-conv = upsampling convolution.

Tables

  • Figures
    • View popup
    TABLE 1.

    Summary of AI Approaches for PET Image Enhancement

    PaperData detailsArchitectureLoss function
    Xiang et al. (21)16 brain 18F-FDG PET + T1 MRIAutocontext CNNMSE
    Xu et al. (22)9 brain 18F-FDG PET + T1 MRIU-NetMAE
    Wang et al. (23)16 brain 18F-FDG PETConcatenated 3D cGAN with a 3D U-Netlike generatorMAE; cGAN
    Ouyang et al. (24)39 brain 18F-florbetaben PETcGAN with U-Net-like generatorMAE; cGAN; perceptual; content
    Wang et al. (25)20 simulated + 16 clinical brain 18F-FDG PET, T1 MRI, diffusion tensor imagingLocality adaptive multimodality GANMAE; adversarial
    Schaefferkoetter et al. (26)31 lung 18F-FDG PETU-NetMSE
    Spuhler et al. (27)35 brain 18F-FDG PETDilated U-NetMAE
    Xue et al. (28)10 whole-body 18F-FDG PET3D attention residual least-squares GANMSE; least-squares adversarial
    Zhao et al. (29)109 brain 18F-FDG PET/CTSupervised cycleGANAdversarial; cycle consistency; identity
    Gong et al. (30)9 cardiac torso 18F-FDG PETParameter-transferred Wasserstein GANMSE; Adversarial
    Gong et al. (31)120 brain 18F-FDG PET; 140 brain 18F-MK-6240 PET + T1 MRIDenoising diffusion probabilistic modelMSE
    Zhang et al. (32)70 brain 18F-FDG PET + T1 MRISpatially adaptive and transformer fusion networkMAE
    Cui et al. (34)10 lung 68Ga-PRGD2 PET/CT; 30 lung 18F-FDG PET/T1 MRIModified 3D U-Net with DIPMSE
    Cui et al. (35)10 lung 68Ga-PRGD2 PET/CT; 30 lung 18F-FDG PET/T1 MRIModified 3D U-Net with DIPMSE
    Song et al. (36)20 simulated brain 18F-FDG PET; 17 brain 18F-FDG PET + T1 MRINoise2Void (U-Net with 3 resolution levels)MSE
    Liu et al. (37)195 cardiac torso 18F-FDG PET3D U-NetMSE
    Zhou et al. (38)Heterogeneous multiinstitutional PETDeep attention residual U-NetMSE
    Xue et al. (39)310 brain across 18F-FDG, 18F-FET, 18F-florbetapir PETcGANConventional content; voxelwise
    Jang et al. (33)44 whole-body 18F-FDG, 40 whole-body 18F-ACBC, 10 whole-body 18F-DCFPyL, 18 whole-body 68Ga-DOTATATESpach transformerCharbonnier
    Song et al. (40)20 simulated brain 18F-FDG PET; 30 clinical brain 18F-FDG PET + T1 MRIVery deep superresolution CNNMAE
    Song et al. (41)20 simulated brain 18F-FDG PET; 30 clinical brain 18F-FDG PETSelf-supervised superresolution (CycleGAN)Adversarial; cycle consistency; total variation
    Sanaat et al. (42)50 brain 18F-FDG, 50 brain 18F-flortaucipir, 36 brain 18F-flutemetamol, 76 brain 18F-fluoro-DOPA + T1 MRICycleGANAdversarial
    Sanaat et al. (43)100 brain 18F-FDG, 100 18F-flortaucipir, 100 brain 18F-flutemetamolCycleGANAdversarial
    Azimi et al. (44)160 brain 18F-FDG PET/CTAttention-based network (U-Net)MSE
    Mehranian et al. (45)273 whole-body 18F-FDG PET3D residual U-NetMSE
    • MSE = mean-squared error; MAE = mean absolute error; 18F-ACBC = 1-amino-3-18F-fluorocyclobutane-1-carboxylic acid.

    • View popup
    TABLE 2.

    Summary of Deep-Learning Techniques for SPECT Image Enhancement

    PaperData detailsArchitectureLoss function
    Ramon et al. (46)930 cardiac torso 99mTc-sestamibi3D convolutional autoencoderMSE
    Ramon et al. (47)1,052 cardiac torso 99mTc-sestamibiConvolutional autoencoder, CNNMSE
    Sun et al. (48)100 simulated; 20 cardiac torso clinical 99mTc-sestamibiPix2Pix GANMAE; adversarial
    Sohlberg et al. (49)93 cardiac torso 99mTc-tetrososminCNN, residual network, U-Net, cGANMSE
    Yu et al. (50)4,800 simulatedCNNMSE
    Shiri et al. (51)363 cardiac torso 99mTc-sestamibiDeep residual neural networkMSE
    Lin et al. (52)112 cardiac torso 99mTc-DMSA3D residual U-NetMSE
    Pan et al. (53)20 cardiac torso 99mTc-MDP SPECT/CTLesion-attention weighted U2NetMAE; structural similarity index
    Liu et al. (54)895 cardiac torso 99mTc-sestamibiNoise2Noise (U-Net)MSE
    Liu et al. (55)1,050 cardiac torso 99mTc-sestamibi3D-coupled UNetMSE
    Xie et al. (56)28 cardiac 99mTc-RBCDensely connected multidimensional dynamic U-NetMAE; structural similarity index; Sobel operator; intramyocardial blood volume
    • MSE = mean-squared error; MAE = mean absolute error; DMSA = pentavalent dimercaptosuccinic acid; MDP = methyl diphosphonate; RBC = red blood cell.

PreviousNext
Back to top

In this issue

Journal of Nuclear Medicine: 65 (1)
Journal of Nuclear Medicine
Vol. 65, Issue 1
January 1, 2024
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Complete Issue (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Nuclear Medicine.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Artificial Intelligence for PET and SPECT Image Enhancement
(Your Name) has sent you a message from Journal of Nuclear Medicine
(Your Name) thought you would like to see the Journal of Nuclear Medicine web site.
Citation Tools
Artificial Intelligence for PET and SPECT Image Enhancement
Vibha Balaji, Tzu-An Song, Masoud Malekzadeh, Pedram Heidari, Joyita Dutta
Journal of Nuclear Medicine Jan 2024, 65 (1) 4-12; DOI: 10.2967/jnumed.122.265000

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Artificial Intelligence for PET and SPECT Image Enhancement
Vibha Balaji, Tzu-An Song, Masoud Malekzadeh, Pedram Heidari, Joyita Dutta
Journal of Nuclear Medicine Jan 2024, 65 (1) 4-12; DOI: 10.2967/jnumed.122.265000
Twitter logo Facebook logo LinkedIn logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • TECHNICAL CONSIDERATIONS FOR AI-BASED IMAGE ENHANCEMENT
    • PET IMAGE ENHANCEMENT
    • SPECT IMAGE ENHANCEMENT
    • DISCUSSION
    • CONCLUSION
    • DISCLOSURE
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Artificial Intelligence Algorithms Are Not Clairvoyant
  • Reply: Artificial Intelligence Algorithms Are Not Clairvoyant
  • Google Scholar

More in this TOC Section

  • Quantitative Brain Amyloid PET
  • The Potential Contribution of Radiopharmaceutical Therapies in Managing Oligometastatic Disease
  • Sequencing of Somatostatin-Receptor–Based Therapies in Neuroendocrine Tumor Patients
Show more State of the Art

Similar Articles

Keywords

  • artificial intelligence
  • denoising
  • superresolution
  • PET
  • SPECT
SNMMI

© 2025 SNMMI

Powered by HighWire