Abstract
For over 40 years, 18F-FDG has been the dominant PET tracer in neurology, cardiology, inflammatory diseases, and, most particularly, oncology. Combined with the ability to perform whole-body scanning, 18F-FDG has revolutionized the evaluation of cancer and has stifled the adoption of other tracers, except in situations where low avidity or high background activity limits diagnostic performance. The strength of 18F-FDG has generally been its ability to detect disease in the absence of structural abnormality, thereby enhancing diagnostic sensitivity, but its simultaneous weakness has been a lack of specificity due to diverse pathologies with enhanced glycolysis. Radiotracers that leverage other hallmarks of cancer or specific cell-surface targets are gradually finding a niche in the diagnostic armamentarium. However, none have had sufficient sensitivity to realistically compete with 18F-FDG for evaluation of the broad spectrum of malignancies. Perhaps, this situation is about to change with development of a class of tracers targeting fibroblast activation protein that have low uptake in almost all normal tissues but high uptake in most cancer types. In this review, the development and exciting preliminary clinical data relating to various fibroblast activation protein–specific small-molecule inhibitor tracers in oncology will be discussed along with potential nononcologic applications.
Footnotes
Published online Dec. 4, 2020.
- © 2021 by the Society of Nuclear Medicine and Molecular Imaging.
This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.
SNMMI members
Login to the site using your SNMMI member credentials
Individuals
Login as an individual user