Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Ahead of print
    • Past Issues
    • JNM Supplement
    • SNMMI Annual Meeting Abstracts
    • Continuing Education
    • JNM Podcasts
  • Subscriptions
    • Subscribers
    • Institutional and Non-member
    • Rates
    • Journal Claims
    • Corporate & Special Sales
  • Authors
    • Submit to JNM
    • Information for Authors
    • Assignment of Copyright
    • AQARA requirements
  • Info
    • Reviewers
    • Permissions
    • Advertisers
  • About
    • About Us
    • Editorial Board
    • Contact Information
  • More
    • Alerts
    • Feedback
    • Help
    • SNMMI Journals
  • SNMMI
    • JNM
    • JNMT
    • SNMMI Journals
    • SNMMI

User menu

  • Subscribe
  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Journal of Nuclear Medicine
  • SNMMI
    • JNM
    • JNMT
    • SNMMI Journals
    • SNMMI
  • Subscribe
  • My alerts
  • Log in
  • Log out
  • My Cart
Journal of Nuclear Medicine

Advanced Search

  • Home
  • Content
    • Current
    • Ahead of print
    • Past Issues
    • JNM Supplement
    • SNMMI Annual Meeting Abstracts
    • Continuing Education
    • JNM Podcasts
  • Subscriptions
    • Subscribers
    • Institutional and Non-member
    • Rates
    • Journal Claims
    • Corporate & Special Sales
  • Authors
    • Submit to JNM
    • Information for Authors
    • Assignment of Copyright
    • AQARA requirements
  • Info
    • Reviewers
    • Permissions
    • Advertisers
  • About
    • About Us
    • Editorial Board
    • Contact Information
  • More
    • Alerts
    • Feedback
    • Help
    • SNMMI Journals
  • View or Listen to JNM Podcast
  • Visit JNM on Facebook
  • Join JNM on LinkedIn
  • Follow JNM on Twitter
  • Subscribe to our RSS feeds
Meeting ReportInstrumentation & Data Analysis

Compressed sensing for the multiplexing of large area silicon photomultiplier PET detectors: Acquisition and calibration

Peter Olcott, Ealgoo Kim, Garry Chinn and Craig Levin
Journal of Nuclear Medicine May 2012, 53 (supplement 1) 2388;
Peter Olcott
1Bio-engineering, Stanford University, Stanford, CA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ealgoo Kim
2Radiology, Stanford Medical School, Stanford, CA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Garry Chinn
2Radiology, Stanford Medical School, Stanford, CA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Craig Levin
2Radiology, Stanford Medical School, Stanford, CA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
Loading

Abstract

2388

Objectives Potential clinical silicon photomultiplier based PET systems will consist of tens of thousands of individual sensors. Compressed sensing electronics can be used to multiplex a large number of individual readout sensors to significantly reduce the number of readout channels.

Methods Using brute force optimization method, a two level sensing matrix based on a 2-weight constant weight code C1[128:32] followed by a 3 weight constant weight code C2[32:16] was designed. These codes consists of discrete resistor elements either connected or not connected to intermediate or output signals. A PET block detector PCB and electronics were fabricated that can multiplex 128 3.2 mm x 3.2 mm solid-state photomultiplier pixels arranged into a 16 x 8 array. Signals from the detector were acquired by a custom 16 channel simultaneously sampling 12-bit 65 Msps ADC acquisition system. Each of the signals was summed to form a trigger, and the peak value for each event on each channel was captured simultaneously. For calibration, we placed a single 4 x 4 array of 3.2 mm x 3.2 mm x 20 mm LYSO crystals onto one of the populated detectors and collected a uniform flood calibration dataset using a 125μCi Ge source. We used a KNN Density clustering method to calculate the centroids of the calibration flood irradiation that were mapped through the sensing matrix and captured by the 16 ADC channels.

Results All 16 crystals were clearly segmented from the 16 dimensional output data using the new KNN-density clustering method. After correcting for the gain non-uniformities of the SiPM sensor, we measured a preliminary 23.7 +/- 1.2% FWHM energy resolution at 511 keV.

Conclusions We have successfully fabricated, performed data acquisition, developed a new calibration method, and done preliminary calibration for a compressed sensing PET detector.

Research Support This work was funded in part by a Stanford SIGF Bio-X Graduate Fellowship

Figure
  • Download figure
  • Open in new tab
  • Download powerpoint

Traditional Multiplexing versus Compressed Sensing

Back to top

In this issue

Journal of Nuclear Medicine
Vol. 53, Issue supplement 1
May 2012
  • Table of Contents
  • Index by author
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Nuclear Medicine.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Compressed sensing for the multiplexing of large area silicon photomultiplier PET detectors: Acquisition and calibration
(Your Name) has sent you a message from Journal of Nuclear Medicine
(Your Name) thought you would like to see the Journal of Nuclear Medicine web site.
Citation Tools
Compressed sensing for the multiplexing of large area silicon photomultiplier PET detectors: Acquisition and calibration
Peter Olcott, Ealgoo Kim, Garry Chinn, Craig Levin
Journal of Nuclear Medicine May 2012, 53 (supplement 1) 2388;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Compressed sensing for the multiplexing of large area silicon photomultiplier PET detectors: Acquisition and calibration
Peter Olcott, Ealgoo Kim, Garry Chinn, Craig Levin
Journal of Nuclear Medicine May 2012, 53 (supplement 1) 2388;
Twitter logo Facebook logo LinkedIn logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
  • Figures & Data
  • Info & Metrics

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

Instrumentation & Data Analysis

  • Exploring the impact of feature selection methods and classification algorithms on the predictive performance of PET radiomic ML models in lung cancer
  • Accuracy of 177Lu-DOTATATE PRRT absorbed dose estimation by reducing the imaging points
  • Assessment of AI-Enhanced Quantitative Volumetric MRI with Semi-Quantitative Analysis in 18F-FDG Metabolic Imaging for Alzheimer's Diagnosis.
Show more Instrumentation & Data Analysis

MTA II: Instrumentation Posters

  • A pre-clinical PET scanner based on a single piece of annular scintillator: a simulation study
  • Molecular Breast Imaging (MBI) guided biopsy - lesion targeting accuracy verification
  • Development of a target-oriented SPECT using a variable pinhole collimator
Show more MTA II: Instrumentation Posters

Similar Articles

SNMMI

© 2025 SNMMI

Powered by HighWire