Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Ahead of print
    • Past Issues
    • JNM Supplement
    • SNMMI Annual Meeting Abstracts
    • Continuing Education
    • JNM Podcasts
  • Subscriptions
    • Subscribers
    • Institutional and Non-member
    • Rates
    • Journal Claims
    • Corporate & Special Sales
  • Authors
    • Submit to JNM
    • Information for Authors
    • Assignment of Copyright
    • AQARA requirements
  • Info
    • Reviewers
    • Permissions
    • Advertisers
  • About
    • About Us
    • Editorial Board
    • Contact Information
  • More
    • Alerts
    • Feedback
    • Help
    • SNMMI Journals
  • SNMMI
    • JNM
    • JNMT
    • SNMMI Journals
    • SNMMI

User menu

  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Nuclear Medicine
  • SNMMI
    • JNM
    • JNMT
    • SNMMI Journals
    • SNMMI
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Journal of Nuclear Medicine

Advanced Search

  • Home
  • Content
    • Current
    • Ahead of print
    • Past Issues
    • JNM Supplement
    • SNMMI Annual Meeting Abstracts
    • Continuing Education
    • JNM Podcasts
  • Subscriptions
    • Subscribers
    • Institutional and Non-member
    • Rates
    • Journal Claims
    • Corporate & Special Sales
  • Authors
    • Submit to JNM
    • Information for Authors
    • Assignment of Copyright
    • AQARA requirements
  • Info
    • Reviewers
    • Permissions
    • Advertisers
  • About
    • About Us
    • Editorial Board
    • Contact Information
  • More
    • Alerts
    • Feedback
    • Help
    • SNMMI Journals
  • View or Listen to JNM Podcast
  • Visit JNM on Facebook
  • Join JNM on LinkedIn
  • Follow JNM on Twitter
  • Subscribe to our RSS feeds
OtherBasic Science Investigations

Correction Methods for Random Coincidences in Fully 3D Whole-Body PET: Impact on Data and Image Quality

David Brasse, Paul E. Kinahan, Carole Lartizien, Claude Comtat, Mike Casey and Christian Michel
Journal of Nuclear Medicine May 2005, 46 (5) 859-867;
David Brasse
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Paul E. Kinahan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Carole Lartizien
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Claude Comtat
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mike Casey
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Christian Michel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Abstract

With the advantages of the increased sensitivity of fully 3-dimensional (3D) PET for whole-body imaging come the challenges of more complicated quantitative corrections and, in particular, an increase in the number of random coincidences. The most common method of correcting for random coincidences is the real-time subtraction of a delayed coincidence channel, which does not add bias but increases noise. An alternative approach is the postacquisition subtraction of a low-noise random coincidence estimate, which can be obtained either from a smoothed delayed coincidence sinogram or from a calibration scan or directly estimated. Each method makes different trade-offs between noise amplification, bias, and data-processing requirements. These trade-offs are dependent on activity injected, the local imaging environment (e.g., near the bladder), and the reconstruction algorithm. Methods: Using fully 3D whole-body simulations and phantom studies, we investigate how the gains in noise equivalent count (NEC) rates from using a noiseless random coincidence estimation method are translated to improvements in image signal-to-noise ratio (SNR). The image SNR, however, depends on the image reconstruction method and the local imaging environment. Results: We show that for fully 3D whole-body imaging using a particular set of scanners and clinical protocols, a low-noise estimate of random coincidences improves sinogram and image SNRs by approximately 15% compared with online subtraction of delayed coincidences. Conclusion: A 15% improvement in image SNR arises from a 32% increase in the NEC rate. Thus, scan duration can be reduced by 25% while still maintaining a constant total acquired NEC.

  • fully 3-dimensional whole-body PET
  • random coincidences
  • image quality
  • NEC
  • SNR

Footnotes

  • Received Apr. 22, 2004; revision accepted Dec. 28, 2004.

    For correspondence or reprints contact: Paul E. Kinahan, PhD, University of Washington Medical Center, Box 356004, 1959 N.E. Pacific St., Seattle, WA 98195-6004.

    E-mail: kinahan{at}u.washington.edu

View Full Text
PreviousNext
Back to top

In this issue

Journal of Nuclear Medicine: 46 (5)
Journal of Nuclear Medicine
Vol. 46, Issue 5
May 1, 2005
  • Table of Contents
  • About the Cover
  • Index by author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Nuclear Medicine.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Correction Methods for Random Coincidences in Fully 3D Whole-Body PET: Impact on Data and Image Quality
(Your Name) has sent you a message from Journal of Nuclear Medicine
(Your Name) thought you would like to see the Journal of Nuclear Medicine web site.
Citation Tools
Correction Methods for Random Coincidences in Fully 3D Whole-Body PET: Impact on Data and Image Quality
David Brasse, Paul E. Kinahan, Carole Lartizien, Claude Comtat, Mike Casey, Christian Michel
Journal of Nuclear Medicine May 2005, 46 (5) 859-867;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Correction Methods for Random Coincidences in Fully 3D Whole-Body PET: Impact on Data and Image Quality
David Brasse, Paul E. Kinahan, Carole Lartizien, Claude Comtat, Mike Casey, Christian Michel
Journal of Nuclear Medicine May 2005, 46 (5) 859-867;
Twitter logo Facebook logo LinkedIn logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSION
    • APPENDIX
    • Acknowledgments
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • PDF

Related Articles

  • THIS MONTH IN JNM
  • PubMed
  • Google Scholar

Cited By...

  • The Impact of Image Reconstruction Bias on PET/CT 90Y Dosimetry After Radioembolization
  • Google Scholar

More in this TOC Section

  • Design and Fabrication of Kidney Phantoms for Internal Radiation Dosimetry Using 3D Printing Technology
  • Synthesis and Biologic Evaluation of Novel 18F-Labeled Probes Targeting Prostate-Specific Membrane Antigen for PET of Prostate Cancer
  • Tumor-Specific Binding of Radiolabeled PEGylated GIRLRG Peptide: A Novel Agent for Targeting Cancers
Show more Basic Science Investigations

Similar Articles

SNMMI

© 2025 SNMMI

Powered by HighWire