Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Ahead of print
    • Past Issues
    • JNM Supplement
    • SNMMI Annual Meeting Abstracts
    • Continuing Education
    • JNM Podcasts
  • Subscriptions
    • Subscribers
    • Institutional and Non-member
    • Rates
    • Journal Claims
    • Corporate & Special Sales
  • Authors
    • Submit to JNM
    • Information for Authors
    • Assignment of Copyright
    • AQARA requirements
  • Info
    • Reviewers
    • Permissions
    • Advertisers
  • About
    • About Us
    • Editorial Board
    • Contact Information
  • More
    • Alerts
    • Feedback
    • Help
    • SNMMI Journals
  • SNMMI
    • JNM
    • JNMT
    • SNMMI Journals
    • SNMMI

User menu

  • Subscribe
  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Journal of Nuclear Medicine
  • SNMMI
    • JNM
    • JNMT
    • SNMMI Journals
    • SNMMI
  • Subscribe
  • My alerts
  • Log in
  • Log out
  • My Cart
Journal of Nuclear Medicine

Advanced Search

  • Home
  • Content
    • Current
    • Ahead of print
    • Past Issues
    • JNM Supplement
    • SNMMI Annual Meeting Abstracts
    • Continuing Education
    • JNM Podcasts
  • Subscriptions
    • Subscribers
    • Institutional and Non-member
    • Rates
    • Journal Claims
    • Corporate & Special Sales
  • Authors
    • Submit to JNM
    • Information for Authors
    • Assignment of Copyright
    • AQARA requirements
  • Info
    • Reviewers
    • Permissions
    • Advertisers
  • About
    • About Us
    • Editorial Board
    • Contact Information
  • More
    • Alerts
    • Feedback
    • Help
    • SNMMI Journals
  • View or Listen to JNM Podcast
  • Visit JNM on Facebook
  • Join JNM on LinkedIn
  • Follow JNM on Twitter
  • Subscribe to our RSS feeds

deep learning

  • Explainable Deep Learning Improves Physician Interpretation of Myocardial Perfusion Imaging
    You have access
    Explainable Deep Learning Improves Physician Interpretation of Myocardial Perfusion Imaging
    Robert J.H. Miller, Keiichiro Kuronuma, Ananya Singh, Yuka Otaki, Sean Hayes, Panithaya Chareonthaitawee, Paul Kavanagh, Tejas Parekh, Balaji K. Tamarappoo, Tali Sharir, Andrew J. Einstein, Mathews B. Fish, Terrence D. Ruddy, Philipp A. Kaufmann, Albert J. Sinusas, Edward J. Miller, Timothy M. Bateman, Sharmila Dorbala, Marcelo Di Carli, Sebastien Cadet, Joanna X. Liang, Damini Dey, Daniel S. Berman and Piotr J. Slomka
    Journal of Nuclear Medicine November 1, 2022, 63 (11) 1768-1774; DOI: https://doi.org/10.2967/jnumed.121.263686
  • Evaluation of Deep Learning–Based Approaches to Segment Bowel Air Pockets and Generate Pelvic Attenuation Maps from CAIPIRINHA-Accelerated Dixon MR Images
    You have access
    Evaluation of Deep Learning–Based Approaches to Segment Bowel Air Pockets and Generate Pelvic Attenuation Maps from CAIPIRINHA-Accelerated Dixon MR Images
    Hasan Sari, Ja Reaungamornrat, Onofrio A. Catalano, Javier Vera-Olmos, David Izquierdo-Garcia, Manuel A. Morales, Angel Torrado-Carvajal, Thomas S.C. Ng, Norberto Malpica, Ali Kamen and Ciprian Catana
    Journal of Nuclear Medicine March 1, 2022, 63 (3) 468-475; DOI: https://doi.org/10.2967/jnumed.120.261032
  • Direct Attenuation Correction Using Deep Learning for Cardiac SPECT: A Feasibility Study
    You have access
    Direct Attenuation Correction Using Deep Learning for Cardiac SPECT: A Feasibility Study
    Jaewon Yang, Luyao Shi, Rui Wang, Edward J. Miller, Albert J. Sinusas, Chi Liu, Grant T. Gullberg and Youngho Seo
    Journal of Nuclear Medicine November 1, 2021, 62 (11) 1645-1652; DOI: https://doi.org/10.2967/jnumed.120.256396
  • Conditional Generative Adversarial Networks Aided Motion Correction of Dynamic <sup>18</sup>F-FDG PET Brain Studies
    Open Access
    Conditional Generative Adversarial Networks Aided Motion Correction of Dynamic 18F-FDG PET Brain Studies
    Lalith Kumar Shiyam Sundar, David Iommi, Otto Muzik, Zacharias Chalampalakis, Eva-Maria Klebermass, Marius Hienert, Lucas Rischka, Rupert Lanzenberger, Andreas Hahn, Ekaterina Pataraia, Tatjana Traub-Weidinger, Johann Hummel and Thomas Beyer
    Journal of Nuclear Medicine June 1, 2021, 62 (6) 871-879; DOI: https://doi.org/10.2967/jnumed.120.248856
  • Deep-Learning <sup>18</sup>F-FDG Uptake Classification Enables Total Metabolic Tumor Volume Estimation in Diffuse Large B-Cell Lymphoma
    Open Access
    Deep-Learning 18F-FDG Uptake Classification Enables Total Metabolic Tumor Volume Estimation in Diffuse Large B-Cell Lymphoma
    Nicolò Capobianco, Michel Meignan, Anne-Ségolène Cottereau, Laetitia Vercellino, Ludovic Sibille, Bruce Spottiswoode, Sven Zuehlsdorff, Olivier Casasnovas, Catherine Thieblemont and Irène Buvat
    Journal of Nuclear Medicine January 1, 2021, 62 (1) 30-36; DOI: https://doi.org/10.2967/jnumed.120.242412
  • You have access
    Projection Space Implementation of Deep Learning–Guided Low-Dose Brain PET Imaging Improves Performance over Implementation in Image Space
    Amirhossein Sanaat, Hossein Arabi, Ismini Mainta, Valentina Garibotto and Habib Zaidi
    Journal of Nuclear Medicine September 1, 2020, 61 (9) 1388-1396; DOI: https://doi.org/10.2967/jnumed.119.239327
  • You have access
    Artificial Intelligence in Nuclear Medicine
    Felix Nensa, Aydin Demircioglu and Christoph Rischpler
    Journal of Nuclear Medicine September 1, 2019, 60 (Supplement 2) 29S-37S; DOI: https://doi.org/10.2967/jnumed.118.220590
  • You have access
    Radiomics: Data Are Also Images
    Mathieu Hatt, Catherine Cheze Le Rest, Florent Tixier, Bogdan Badic, Ulrike Schick and Dimitris Visvikis
    Journal of Nuclear Medicine September 1, 2019, 60 (Supplement 2) 38S-44S; DOI: https://doi.org/10.2967/jnumed.118.220582
  • You have access
    Generation of PET Attenuation Map for Whole-Body Time-of-Flight 18F-FDG PET/MRI Using a Deep Neural Network Trained with Simultaneously Reconstructed Activity and Attenuation Maps
    Donghwi Hwang, Seung Kwan Kang, Kyeong Yun Kim, Seongho Seo, Jin Chul Paeng, Dong Soo Lee and Jae Sung Lee
    Journal of Nuclear Medicine August 1, 2019, 60 (8) 1183-1189; DOI: https://doi.org/10.2967/jnumed.118.219493
  • You have access
    Deep Learning Analysis of Upright-Supine High-Efficiency SPECT Myocardial Perfusion Imaging for Prediction of Obstructive Coronary Artery Disease: A Multicenter Study
    Julian Betancur, Lien-Hsin Hu, Frederic Commandeur, Tali Sharir, Andrew J. Einstein, Mathews B. Fish, Terrence D. Ruddy, Philipp A. Kaufmann, Albert J. Sinusas, Edward J. Miller, Timothy M. Bateman, Sharmila Dorbala, Marcelo Di Carli, Guido Germano, Yuka Otaki, Joanna X. Liang, Balaji K. Tamarappoo, Damini Dey, Daniel S. Berman and Piotr J. Slomka
    Journal of Nuclear Medicine May 1, 2019, 60 (5) 664-670; DOI: https://doi.org/10.2967/jnumed.118.213538

Pages

  • Previous
  • Next
  • 1
  • 2
  • 3
SNMMI

© 2025 SNMMI

Powered by HighWire