Visual Abstract
Abstract
Para-aminohippurate, also known as p-aminohippuric acid (PAH), is used clinically to measure effective renal plasma flow. Preclinically, it was shown to reduce 177Lu-DOTATOC uptake in the kidneys while improving bioavailability compared with amino acid (AA) coinfusion. We report the safety and efficacy of PAH coinfusion during peptide receptor radiotherapy in patients with neuroendocrine tumors. Methods: Twelve patients with metastatic or unresectable gastroenteropancreatic neuroendocrine tumors received 177Lu-DOTATOC in 33 treatment cycles. Either 8 g of PAH or a mixture of 25 g of arginine and 25 g of lysine were coinfused. Safety was assessed by monitoring laboratory data, including hematologic and renal data, as well as electrolytes obtained before and 24 h after treatment. For radiation dosimetry, whole-body scans were performed at 1, 24, and 48 h and a SPECT/CT scan was performed at 48 h, along with blood sampling at 5 min and 0.5, 2, 4, 24, and 48 h after administration. Absorbed dose estimations for the kidneys and bone marrow were performed according to the MIRD concept. Results: In 15 treatment cycles, PAH was coinfused. No changes in mean creatinine level, glomerular filtration rate, and serum electrolytes were observed before or 24 h after treatment when using PAH protection (P ≥ 0.20), whereas serum chloride and serum phosphate increased significantly under AA (both P < 0.01). Kidney–absorbed dose coefficients were 0.60 ± 0.14 Gy/GBq with PAH and 0.53 ± 0.16 Gy/GBq with AA. Based on extrapolated cumulative kidney-absorbed doses for 4 cycles, 1 patient with PAH protection and 1 patient with AA protection in our patient group would exceed the 23-Gy conservative threshold. The bone marrow–absorbed dose coefficient was 0.012 ± 0.004 Gy/GBq with PAH and 0.012 ± 0.003 Gy/GBq with AA. Conclusion: PAH is a promising alternative to AA for renal protection during peptide receptor radiotherapy. Further research is required to systematically investigate the safety profile and radiation dosimetry at varying PAH plasma concentrations.
Footnotes
Published online Apr. 18, 2024.
- © 2024 by the Society of Nuclear Medicine and Molecular Imaging.
This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.
SNMMI members
Login to the site using your SNMMI member credentials
Individuals
Login as an individual user