Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Ahead of print
    • Past Issues
    • JNM Supplement
    • SNMMI Annual Meeting Abstracts
    • Continuing Education
    • JNM Podcasts
  • Subscriptions
    • Subscribers
    • Institutional and Non-member
    • Rates
    • Journal Claims
    • Corporate & Special Sales
  • Authors
    • Submit to JNM
    • Information for Authors
    • Assignment of Copyright
    • AQARA requirements
  • Info
    • Reviewers
    • Permissions
    • Advertisers
  • About
    • About Us
    • Editorial Board
    • Contact Information
  • More
    • Alerts
    • Feedback
    • Help
    • SNMMI Journals
  • SNMMI
    • JNM
    • JNMT
    • SNMMI Journals
    • SNMMI

User menu

  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Nuclear Medicine
  • SNMMI
    • JNM
    • JNMT
    • SNMMI Journals
    • SNMMI
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Journal of Nuclear Medicine

Advanced Search

  • Home
  • Content
    • Current
    • Ahead of print
    • Past Issues
    • JNM Supplement
    • SNMMI Annual Meeting Abstracts
    • Continuing Education
    • JNM Podcasts
  • Subscriptions
    • Subscribers
    • Institutional and Non-member
    • Rates
    • Journal Claims
    • Corporate & Special Sales
  • Authors
    • Submit to JNM
    • Information for Authors
    • Assignment of Copyright
    • AQARA requirements
  • Info
    • Reviewers
    • Permissions
    • Advertisers
  • About
    • About Us
    • Editorial Board
    • Contact Information
  • More
    • Alerts
    • Feedback
    • Help
    • SNMMI Journals
  • View or Listen to JNM Podcast
  • Visit JNM on Facebook
  • Join JNM on LinkedIn
  • Follow JNM on Twitter
  • Subscribe to our RSS feeds
Research ArticleClinical Investigation
Open Access

Optimized SPECT Imaging of 224Ra α-Particle Therapy by 212Pb Photon Emissions

Lars Tore Gyland Mikalsen, Monika Kvassheim and Caroline Stokke
Journal of Nuclear Medicine July 2023, 64 (7) 1131-1137; DOI: https://doi.org/10.2967/jnumed.122.264455
Lars Tore Gyland Mikalsen
1Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway;
2Department of Life Sciences and Health, Oslo Metropolitan University, Oslo, Norway;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Monika Kvassheim
1Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway;
3Faculty of Medicine, University of Oslo, Oslo, Norway; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Caroline Stokke
1Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway;
4Department of Physics, University of Oslo, Oslo, Norway
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • PDF
Loading

Visual Abstract

Figure
  • Download figure
  • Open in new tab
  • Download powerpoint

Abstract

In preparation for an α-particle therapy trial using 1–7 MBq of 224Ra, the feasibility of tomographic SPECT/CT imaging was of interest. The nuclide decays in 6 steps to stable 208Pb, with 212Pb as the principle photon-emitting nuclide. 212Bi and 208Tl emit high-energy photons up to 2,615 keV. A phantom study was conducted to determine the optimal acquisition and reconstruction protocol. Methods: The spheres of a body phantom were filled with a 224Ra-RaCl2 solution, and the background compartment was filled with water. Images were acquired on a SPECT/CT system. In addition, 30-min scans were acquired for 80- and 240-keV emissions, using triple-energy windows, with both medium-energy and high-energy collimators. Images were acquired at 90–95 and 29–30 kBq/mL, plus an explorative 3-min acquisition at 20 kBq/mL (using only the optimal protocol). Reconstructions were performed with attenuation correction only, attenuation plus scatter correction, 3 levels of postfiltering, and 24 levels of iterative updates. Acquisitions and reconstructions were compared using the maximum value and signal-to-scatter peak ratio for each sphere. Monte Carlo simulations were performed to examine the contributions of key emissions. Results: Secondary photons of the 2,615-keV 208Tl emission produced in the collimators make up most of the acquired energy spectrum, as revealed by Monte Carlo simulations, with only a small fraction (3%–6%) of photons in each window providing useful information for imaging. Still, decent image quality is possible at 30 kBq/mL, and nuclide concentrations are imageable down to approximately 2–5 kBq/mL. The overall best results were obtained with the 240-keV window, medium-energy collimator, attenuation and scatter correction, 30 iterations and 2 subsets, and a 12-mm gaussian postprocessing filter. However, all combinations of the applied collimators and energy windows were capable of producing adequate results, even though some failed to reconstruct the 2 smallest spheres. Conclusion: SPECT/CT imaging of 224Ra in equilibrium with daughters is possible, with sufficient image quality to provide clinical utility for the current trial of intraperitoneally administrated activity. A systematic scheme for optimization was designed to select acquisition and reconstruction settings.

  • optimization
  • SPECT
  • Ra224
  • Pb212
  • α-particle therapy

Footnotes

  • Published online Jun. 2, 2023.

  • © 2023 by the Society of Nuclear Medicine and Molecular Imaging.

Immediate Open Access: Creative Commons Attribution 4.0 International License (CC BY) allows users to share and adapt with attribution, excluding materials credited to previous publications. License: https://creativecommons.org/licenses/by/4.0/. Details: http://jnm.snmjournals.org/site/misc/permission.xhtml.

View Full Text
PreviousNext
Back to top

In this issue

Journal of Nuclear Medicine: 64 (7)
Journal of Nuclear Medicine
Vol. 64, Issue 7
July 1, 2023
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Complete Issue (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Nuclear Medicine.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Optimized SPECT Imaging of 224Ra α-Particle Therapy by 212Pb Photon Emissions
(Your Name) has sent you a message from Journal of Nuclear Medicine
(Your Name) thought you would like to see the Journal of Nuclear Medicine web site.
Citation Tools
Optimized SPECT Imaging of 224Ra α-Particle Therapy by 212Pb Photon Emissions
Lars Tore Gyland Mikalsen, Monika Kvassheim, Caroline Stokke
Journal of Nuclear Medicine Jul 2023, 64 (7) 1131-1137; DOI: 10.2967/jnumed.122.264455

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Optimized SPECT Imaging of 224Ra α-Particle Therapy by 212Pb Photon Emissions
Lars Tore Gyland Mikalsen, Monika Kvassheim, Caroline Stokke
Journal of Nuclear Medicine Jul 2023, 64 (7) 1131-1137; DOI: 10.2967/jnumed.122.264455
Twitter logo Facebook logo LinkedIn logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Visual Abstract
    • Abstract
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSION
    • DISCLOSURE
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • First-in-Human Phase 0 Study of AB001, a Prostate-Specific Membrane Antigen-Targeted 212Pb Radioligand, in Patients with Metastatic Castration-Resistant Prostate Cancer
  • Google Scholar

More in this TOC Section

  • 177Lu-PSMA-617 Consolidation Therapy After Docetaxel in Patients with Synchronous High-Volume Metastatic Hormone-Sensitive Prostate Cancer: A Randomized, Phase 2 Trial
  • Transarterial Radioembolization in the TACOME Trial: Dosimetric Analysis and Clinical Features in Predicting Response and Overall Survival
  • Retreatment of Metastatic Castration-Resistant Prostate Cancer Patients with 223Ra Therapy in Daily Practice
Show more Clinical Investigation

Similar Articles

Keywords

  • optimization
  • SPECT
  • Ra224
  • Pb212
  • α-particle therapy
SNMMI

© 2025 SNMMI

Powered by HighWire