Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Ahead of print
    • Past Issues
    • JNM Supplement
    • SNMMI Annual Meeting Abstracts
    • Continuing Education
    • JNM Podcasts
  • Subscriptions
    • Subscribers
    • Institutional and Non-member
    • Rates
    • Journal Claims
    • Corporate & Special Sales
  • Authors
    • Submit to JNM
    • Information for Authors
    • Assignment of Copyright
    • AQARA requirements
  • Info
    • Reviewers
    • Permissions
    • Advertisers
  • About
    • About Us
    • Editorial Board
    • Contact Information
  • More
    • Alerts
    • Feedback
    • Help
    • SNMMI Journals
  • SNMMI
    • JNM
    • JNMT
    • SNMMI Journals
    • SNMMI

User menu

  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Nuclear Medicine
  • SNMMI
    • JNM
    • JNMT
    • SNMMI Journals
    • SNMMI
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Journal of Nuclear Medicine

Advanced Search

  • Home
  • Content
    • Current
    • Ahead of print
    • Past Issues
    • JNM Supplement
    • SNMMI Annual Meeting Abstracts
    • Continuing Education
    • JNM Podcasts
  • Subscriptions
    • Subscribers
    • Institutional and Non-member
    • Rates
    • Journal Claims
    • Corporate & Special Sales
  • Authors
    • Submit to JNM
    • Information for Authors
    • Assignment of Copyright
    • AQARA requirements
  • Info
    • Reviewers
    • Permissions
    • Advertisers
  • About
    • About Us
    • Editorial Board
    • Contact Information
  • More
    • Alerts
    • Feedback
    • Help
    • SNMMI Journals
  • View or Listen to JNM Podcast
  • Visit JNM on Facebook
  • Join JNM on LinkedIn
  • Follow JNM on Twitter
  • Subscribe to our RSS feeds
Meeting ReportPhysics, Instrumentation & Data Sciences

Training of deep convolutional neural nets to extract radiomic signatures of tumors

Jiwon Kim, Sophia Seo, Saeed Ashrafinia, Arman Rahmim, Vesna Sossi and Ivan Klyuzhin
Journal of Nuclear Medicine May 2019, 60 (supplement 1) 406;
Jiwon Kim
2University of British Columbia Vancouver BC Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sophia Seo
2University of British Columbia Vancouver BC Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Saeed Ashrafinia
1Johns Hopkins University School of Medicine Baltimore MD United States
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Arman Rahmim
2University of British Columbia Vancouver BC Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Vesna Sossi
2University of British Columbia Vancouver BC Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ivan Klyuzhin
2University of British Columbia Vancouver BC Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
Loading

Abstract

406

Objectives: Radiomics-based analysis of FDG PET images has been shown to improve the assessment and prediction of tumor growth rate, response to treatment and other patient outcomes [1]. An alternative new approach to image analysis involves the use of convolutional neural networks (CNNs), wherein relevant image features are learned implicitly and automatically in the process of network training [2]; this is in contrast to radiomics analyses, where the features are “hand-crafted” and are explicitly computed (EC). Although CNNs represent a more general approach, it is not clear whether the implicitly learned features may, or have the ability to include radiomics features (RFs) as a subset. If this is the case, CNN-based approaches may eventually obviate the use of EC RFs. Further, the use of CNNs instead of RFs may completely eliminate the need for feature selection and tumor delineation, enabling high-throughput data analyses. Thus, our objective was to test whether CNNs can learn to act similarly to several commonly used RFs. Using a set of simulated and real FDG PET images of tumors, we train the CNNs to estimate the values of RFs from the images without the explicit computation. We then compare the values of the CNN-estimated and EC features. Methods: Using a stochastic volumetric model for tumor growth, 2000 FDG images of tumors confined to a bounding box (BB) were simulated (40x40x40 voxels, voxel size 2.0 mm), and 10 RFs (3 x morphology, 4 x intensity histogram, 3 x texture features) were computed for each image using the SERA library [3] (compliant with the Image Biomarker Standardization Initiative, IBSI [4]). A 3D CNN with 4 convolutional layers, and a total of 164 filters, was implemented in Python using the Keras library with TensorFlow backend (https://www.keras.io). The mean absolute error was the optimized loss function. The CNN was trained to automatically estimate the values each of the 10 RFs for each image; 1900 of images were used for training, and 100 were used for testing, to compare the CNN-estimated values to the EC feature values. We also used a secondary test set comprised of 133 real tumor images, obtained from the head and neck PET/CT imaging study [5] publicly available at the Cancer Imaging Archive. The tumors were cropped to a BB, and the images were resampled to yield similar image size to the simulated image set. Results: After the training procedure, on the simulated test set the CNN was able to estimate the values of most EC RFs with 10-20% error (relative to the range). In the morphology group, the errors were 3.8% for volume, 12.0% for compactness, 15.7% for flatness. In the intensity group, the errors were 13.7% for the mean, 15.4% for variance, 12.3% for skewness, and 13.1% for kurtosis. In the texture group, the error was 10.6% for GLCM contrast, 13.4% for cluster tendency, and 21.7% for angular momentum. With all features, the difference between the CNN-estimated and EC feature values were statistically insignificant (two-sample t-test), and the correlation between the feature values was highly significant (p<0.01). On the real image test set, we observed higher error rates, on the order of 20-30%; however, with all but one feature (angular momentum), there was a significant correlation between the CNN-estimated and EC features (p<0.01).

Conclusions: Our results suggest that CNNs can be trained to act similarly to several widely used RFs. While the accuracy of CNN-based estimates varied between the features, in general, the CNN showed a good propensity for learning. Thus, it is likely that with more complex network architectures and training data, features can be estimated more accurately. While a greater number of RFs need to be similarly tested in the future, these initial experiments provide first evidence that, given the sufficient quality and quantity of the training data, the CNNs indeed represent a more general approach to feature extraction, and may potentially replace radiomics-based analyses without compromising the descriptive thoroughness.

Previous
Back to top

In this issue

Journal of Nuclear Medicine
Vol. 60, Issue supplement 1
May 1, 2019
  • Table of Contents
  • Index by author
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Nuclear Medicine.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Training of deep convolutional neural nets to extract radiomic signatures of tumors
(Your Name) has sent you a message from Journal of Nuclear Medicine
(Your Name) thought you would like to see the Journal of Nuclear Medicine web site.
Citation Tools
Training of deep convolutional neural nets to extract radiomic signatures of tumors
Jiwon Kim, Sophia Seo, Saeed Ashrafinia, Arman Rahmim, Vesna Sossi, Ivan Klyuzhin
Journal of Nuclear Medicine May 2019, 60 (supplement 1) 406;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Training of deep convolutional neural nets to extract radiomic signatures of tumors
Jiwon Kim, Sophia Seo, Saeed Ashrafinia, Arman Rahmim, Vesna Sossi, Ivan Klyuzhin
Journal of Nuclear Medicine May 2019, 60 (supplement 1) 406;
Twitter logo Facebook logo LinkedIn logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
  • Info & Metrics

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

Physics, Instrumentation & Data Sciences

  • Keel-Edge Height Selection for Improved Multi-Pinhole 123I Brain SPECT Imaging
  • Ultra-Fast Reconstruction of Short List-Mode PET Data Frames for Real-Time Visualization and Processing
  • Deep Learning Based 3D Dose Estimation from Prompt Gamma Distribution for Proton Therapy Monitoring
Show more Physics, Instrumentation & Data Sciences

Machine Learning in Nuclear Medicine Imaging I: Image Processing and Clinical Tasks

  • Development of transfer learning datasets using realistic simulation of myocardial perfusion SPECT images for a deep learning model
  • Automated Assessment of Prostatic PSMA Expression in SPECT/CT using Deep Convolutional Neural Networks - A Prospectively Planned Retrospective Analysis of Phase 3 Study MIP-1404-3301
  • Development of a deep learning-based interpretation model for brain perfusion SPECT leveraging unstructured reading reports
Show more Machine Learning in Nuclear Medicine Imaging I: Image Processing and Clinical Tasks

Similar Articles

SNMMI

© 2025 SNMMI

Powered by HighWire