Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Ahead of print
    • Past Issues
    • JNM Supplement
    • SNMMI Annual Meeting Abstracts
    • Continuing Education
    • JNM Podcasts
  • Subscriptions
    • Subscribers
    • Institutional and Non-member
    • Rates
    • Journal Claims
    • Corporate & Special Sales
  • Authors
    • Submit to JNM
    • Information for Authors
    • Assignment of Copyright
    • AQARA requirements
  • Info
    • Reviewers
    • Permissions
    • Advertisers
  • About
    • About Us
    • Editorial Board
    • Contact Information
  • More
    • Alerts
    • Feedback
    • Help
    • SNMMI Journals
  • SNMMI
    • JNM
    • JNMT
    • SNMMI Journals
    • SNMMI

User menu

  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Nuclear Medicine
  • SNMMI
    • JNM
    • JNMT
    • SNMMI Journals
    • SNMMI
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Journal of Nuclear Medicine

Advanced Search

  • Home
  • Content
    • Current
    • Ahead of print
    • Past Issues
    • JNM Supplement
    • SNMMI Annual Meeting Abstracts
    • Continuing Education
    • JNM Podcasts
  • Subscriptions
    • Subscribers
    • Institutional and Non-member
    • Rates
    • Journal Claims
    • Corporate & Special Sales
  • Authors
    • Submit to JNM
    • Information for Authors
    • Assignment of Copyright
    • AQARA requirements
  • Info
    • Reviewers
    • Permissions
    • Advertisers
  • About
    • About Us
    • Editorial Board
    • Contact Information
  • More
    • Alerts
    • Feedback
    • Help
    • SNMMI Journals
  • View or Listen to JNM Podcast
  • Visit JNM on Facebook
  • Join JNM on LinkedIn
  • Follow JNM on Twitter
  • Subscribe to our RSS feeds
OtherClinical Investigations

The PET Radioligand [carbonyl-11C]Desmethyl-WAY-100635 Binds to 5-HT1A Receptors and Provides a Higher Radioactive Signal Than [carbonyl-11C]WAY-100635 in the Human Brain

Bengt Andrée, Christer Halldin, Victor W. Pike, Roger N. Gunn, Hans Olsson and Lars Farde
Journal of Nuclear Medicine March 2002, 43 (3) 292-303;
Bengt Andrée
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Christer Halldin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Victor W. Pike
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Roger N. Gunn
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hans Olsson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lars Farde
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Abstract

5-Hydroxytryptamine (serotonin)-1A (5-HT1A) receptors are of key interest in research on the pathophysiology and treatment of psychiatric disorders. The PET radioligand [carbonyl-11C]WAY-100635 (11C-WAY), where WAY-100635 is 3H-(N-(2-(1-(4-(2-methoxyphenyl)-1-piperazinyl)ethyl)-N-(2-pyridyl) cyclohexane-carboxamide, is commonly used for quantitation of 5-HT1A receptors in the human brain. The aim of this PET study was to compare 11C-WAY with the putative metabolite and selective radioligand [carbonyl-11C]desmethyl-WAY-100635 (11C-DWAY). Methods: A PET examination was performed on each of 5 healthy male volunteers after intravenous injection of 11C-WAY and 11C-DWAY on separate occasions. Radioactive metabolites in plasma were determined with high-performance liquid chromatography. The plasma metabolite–corrected input function was used in a kinetic compartment analysis. The simplified reference tissue model and peak equilibrium method, using the cerebellum as reference region, was applied for comparison of data. Results: For both radioligands, the highest radioactivity was observed in the neocortex and the raphe nuclei, whereas radioactivity was low in the cerebellum. The regional binding potentials were similar for the 2 radioligands. The brain uptake was more than 2-fold higher for 11C-DWAY than for 11C-WAY, in part because of higher delivery (first-order rate constant K1, 0.38 vs. 0.16). The time–activity curves were well described by a 3-compartment model for all regions, whereas uptake in the cerebellum could not be described by a 2-compartment model, supporting the existence of kinetically distinguishable nonspecific binding in the cerebellum or radioactive metabolites in the brain for both radioligands. Both radioligands were rapidly metabolized, and <10% of the radioactivity in plasma represented unchanged 11C-WAY or 11C-DWAY at 10 min after injection. The metabolic pattern was similar for both radioligands, with the formation of radiolabeled cyclohexanecarboxylic acid and more polar components. For 11C-WAY, small amounts of an additional labeled metabolite comigrated with reference desmethyl-WAY-100635. Conclusion: The advantages of 11C-DWAY over 11C-WAY for research on central 5-HT1A receptors is supported by a significantly higher radioactivity signal at equipotent doses, providing improved imaging statistics and advantages in biomathematic modeling and the preclusion of 11C-DWAY as a metabolite interfering with PET measurements.

  • brain
  • human
  • PET
  • 5-hydroxytryptamine-1A receptors
  • WAY-100635
  • desmethyl-WAY-100635
  • kinetic modeling

Footnotes

  • Received Feb. 5, 2001; revision accepted Dec. 3, 2001.

    For correspondence or reprints contact: Bengt Andrée, MD, PhD, Psychiatry Section, Department of Clinical Neuroscience, Karolinska Hospital, Karolinska Institutet, S-17176 Stockholm, Sweden.

    E-mail: bengt.andree{at}ks.se

View Full Text
PreviousNext
Back to top

In this issue

Journal of Nuclear Medicine
Vol. 43, Issue 3
March 1, 2002
  • Table of Contents
  • Index by author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Nuclear Medicine.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The PET Radioligand [carbonyl-11C]Desmethyl-WAY-100635 Binds to 5-HT1A Receptors and Provides a Higher Radioactive Signal Than [carbonyl-11C]WAY-100635 in the Human Brain
(Your Name) has sent you a message from Journal of Nuclear Medicine
(Your Name) thought you would like to see the Journal of Nuclear Medicine web site.
Citation Tools
The PET Radioligand [carbonyl-11C]Desmethyl-WAY-100635 Binds to 5-HT1A Receptors and Provides a Higher Radioactive Signal Than [carbonyl-11C]WAY-100635 in the Human Brain
Bengt Andrée, Christer Halldin, Victor W. Pike, Roger N. Gunn, Hans Olsson, Lars Farde
Journal of Nuclear Medicine Mar 2002, 43 (3) 292-303;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
The PET Radioligand [carbonyl-11C]Desmethyl-WAY-100635 Binds to 5-HT1A Receptors and Provides a Higher Radioactive Signal Than [carbonyl-11C]WAY-100635 in the Human Brain
Bengt Andrée, Christer Halldin, Victor W. Pike, Roger N. Gunn, Hans Olsson, Lars Farde
Journal of Nuclear Medicine Mar 2002, 43 (3) 292-303;
Twitter logo Facebook logo LinkedIn logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSION
    • Acknowledgments
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Using Cerebral White Matter for Estimation of Nondisplaceable Binding of 5-HT1A Receptors in Temporal Lobe Epilepsy
  • Synthesis and Biologic Evaluation of a Novel Serotonin 5-HT1A Receptor Radioligand, 18F-Labeled Mefway, in Rodents and Imaging by PET in a Nonhuman Primate
  • Google Scholar

More in this TOC Section

  • Cardiac Presynaptic Sympathetic Nervous Function Evaluated by Cardiac PET in Patients with Chronotropic Incompetence Without Heart Failure
  • Validation and Evaluation of a Vendor-Provided Head Motion Correction Algorithm on the uMI Panorama PET/CT System
  • Prognostic Role of 68Ga-PSMA11 PET–Based Response in Patients with Prostate Cancer Undergoing Taxane-Based Chemotherapy
Show more Clinical Investigations

Similar Articles

SNMMI

© 2025 SNMMI

Powered by HighWire