Non-invasive grading of primary brain tumours: results of a comparative study between SPET with 123I-alpha-methyl tyrosine and PET with 18F-deoxyglucose

Eur J Nucl Med. 1997 Apr;24(4):428-34. doi: 10.1007/BF00881816.

Abstract

Use of iodine-123-alpha-methyl tyrosine (123I-IMT) allows investigation of the amino acid transport rate in gliomas. It was the aim of this study to compare the value of measurement of glucose metabolism with that of measurement of 123I-IMT uptake for the non-invasive grading of brain tumours. The study population comprised 23 patients with histopathologically proven primary brain tumours; 14 had high-grade gliomas, and nine low-grade brain neoplasms. Glucose metabolism was studied using an ECAT EXACT 47 positron emission tomography (PET) camera and fluorine-18 fluorodeoxyglucose (18F-FDG); 123I-IMT uptake was measured with the triple-headed single-photon emission tomography (SPET) camera, MULTISPECT 3. 18F-FDG and 123I-IMT uptake was quantified as ratios between the uptake by the tumour and contralateral regions of reference. Glucose metabolism and amino acid uptake of the brain tumours correlated significantly (r=0.71, P <0.001). Assuming discrimination thresholds between high-grade and low-grade tumours of 0.8 for 18F-FDG uptake and 1.8 for 123I-IMT uptake, the accuracy values of 18F-FDG PET and 123I-IMT SPET for differentiating between high-grade and low-grade tumours were 21/23 (91%) and 19/23 (83%), respectively. The difference in diagnostic performance was not significant on receiver operating characteristic analysis (P >0.4). It is concluded that there is no major difference between the PET investigation of glucose metabolism and the less expensive SPET measurement of amino acid uptake in terms of their accuracy in evaluating the malignancy grade of primary brain tumours. This encourages the performance of further studies to analyse the potential impact of 123I-IMT SPET on the therapeutic management of patients with brain tumours.

Publication types

  • Comparative Study

MeSH terms

  • Adult
  • Aged
  • Amino Acids / metabolism
  • Astrocytoma / diagnostic imaging
  • Astrocytoma / pathology
  • Brain / metabolism
  • Brain Neoplasms / diagnostic imaging*
  • Brain Neoplasms / pathology
  • Deoxyglucose / analogs & derivatives*
  • Enzyme Inhibitors
  • Female
  • Fluorine Radioisotopes*
  • Fluorodeoxyglucose F18
  • Glioblastoma / diagnostic imaging
  • Glioblastoma / pathology
  • Glucose / metabolism
  • Humans
  • Iodine Radioisotopes*
  • Male
  • Methyltyrosines*
  • Middle Aged
  • Tomography, Emission-Computed*
  • Tomography, Emission-Computed, Single-Photon*
  • Tyrosine 3-Monooxygenase / antagonists & inhibitors
  • alpha-Methyltyrosine

Substances

  • Amino Acids
  • Enzyme Inhibitors
  • Fluorine Radioisotopes
  • Iodine Radioisotopes
  • Methyltyrosines
  • Fluorodeoxyglucose F18
  • alpha-Methyltyrosine
  • Deoxyglucose
  • Tyrosine 3-Monooxygenase
  • Glucose