Molecular neuroanatomy of human monoamine oxidases A and B revealed by quantitative enzyme radioautography and in situ hybridization histochemistry

Neuroscience. 1996 Feb;70(3):755-74. doi: 10.1016/s0306-4522(96)83013-2.

Abstract

Monoamine oxidases are key enzymes in the metabolism of amine neurotransmitters and neuromodulators and are targets for drug therapy in depression, Parkinson's and Alzheimer's diseases. Knowledge of their distribution in the brain is essential to understand their physiological role. To study the regional distribution and abundance of monoamine oxidases A and B in human brain, pituitary and superior cervical ganglion, we used quantitative enzyme radioautography with radioligands [3H]Ro41-1049 and [3H]lazabemide, respectively. Furthermore, 35S-labelled oligonucleotides complementary to isoenzyme messengerRNAs were used to map the cellular location of the respective transcripts in adjacent sections by in situ hybridization histochemistry. A markedly different pattern of distribution of the isoenzymes was observed. Highest levels of monoamine oxidase A were measured in the superior cervical ganglion, locus coeruleus, interpeduncular nucleus and ventromedial hypothalamic nucleus. The corresponding messengerRNA was detected only in the noradrenergic neurons of the superior cervical ganglion and locus coeruleus. In contrast to rat brain, monoamine oxidase B was much more abundant in most human brain regions investigated. Highest levels were measured in the ependyma of ventricles, stria terminalis and in individual hypothalamic neurons. Monoamine oxidase B transcripts were detected in serotoninergic raphe neurons, histaminergic hypothalamic neurons and in dentate gyrus granule cells of the hippocampal formation. We conclude that [3H]Ro41-1049 and [3H]azabemide are extremely useful radioligands for high-resolution analyses of the abundance and distribution of catalytic sites of monoamine oxidases A and B, respectively, in human brain sections. From levels of messenger RNA detected, the cellular sites of synthesis of the isoenzymes are the noradrenergic neurons of the locus coeruleus (for monoamine oxidase A) and the serotoninergic and histaminergic neurons of the raphe and posterior hypothalamus, respectively (for monoamine oxidase B). The combination of quantitative enzyme radioautography with in situ hybridization histochemistry is a useful approach to study, with high resolution, both the physiology and pathophysiology of monoamine oxidases in human brain.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Aged
  • Aged, 80 and over
  • Autoradiography
  • Brain / enzymology*
  • Female
  • Histocytochemistry
  • Humans
  • In Situ Hybridization
  • Male
  • Middle Aged
  • Monoamine Oxidase / metabolism*
  • Monoamine Oxidase Inhibitors / metabolism
  • Picolinic Acids / metabolism
  • Thiazoles / metabolism

Substances

  • Monoamine Oxidase Inhibitors
  • Picolinic Acids
  • Thiazoles
  • Ro 41-1049
  • lazabemide
  • Monoamine Oxidase