Eicosanoids and nitric oxide influence induction of reactive gliosis from spreading depression in microglia but not astrocytes

J Comp Neurol. 1996 May 20;369(1):93-108. doi: 10.1002/(SICI)1096-9861(19960520)369:1<93::AID-CNE7>3.0.CO;2-F.

Abstract

Microglia and astrocytes are transformed into reactive glia (RG) by brain disease and normal function. Eicosanoids and nitric oxide (NO), two intercellular mediators, may influence gliosis. We investigated how drugs that alter production of these paracrine signals effect induction of glial reactivity from spreading depression. Unilateral (left) neocortical spreading depression was induced in 95 halothane anesthetized rats by intracortical injections of 0.5 M KCl, with or without drug treatment (five animals/group). Immunohistochemical staining (IS) intensity using the OX-42 and anti-glial fibrillary acidic protein (GFAP) antibodies determined reactivity in microglia and astrocytes, respectively. After 3 days, brains were processed for OX-42 and GFAP-IS and mean optical densities (OD) of IS were measured. Average OD's (for OX-42) and the log ratio (left/right) of OD's (OX-42 and GFAP) were compared to normal animals. Spreading depression induced significant log ratios for both OX-42- and GFAP-IS (P's < 0.01). However, dexamethasone (a glucocorticoid), nordihydroguaiaretic acid (a lipoxygenase inhibitor), and nitroprusside (a NO donor) prevented significant left sided and log ratio OD values for microglia (P's > 0.05). L-Name, a NO synthase inhibitor, caused significant increases in left and right OD's for microglia (P's < 0.05). Mepacrine, a phospholipase A2 inhibitor, Indomethacin, a cyclooxygenase inhibitor, and phenylephrine, an adrenergic agonist, did not prevent induction of significant OX-42 log ratios (P's < 0.01, 0.05, 0.01), and resulted in increases in left side OD's (P's < 0.01, 0.05, 0.05). Significant GFAP log ratios occurred after spreading depression in all drug groups, P's < 0.01. Thus, induction of reactivity in microglia is more sensitive to eicosanoids and NO than in astrocytes.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Astrocytes / metabolism*
  • Cortical Spreading Depression / drug effects
  • Cortical Spreading Depression / physiology*
  • Eicosanoids / metabolism*
  • Gliosis / metabolism*
  • Logistic Models
  • Male
  • Microglia / drug effects
  • Microglia / metabolism*
  • Nitric Oxide / metabolism*
  • Rats
  • Rats, Wistar

Substances

  • Eicosanoids
  • Nitric Oxide