Use of a magnetic field to increase the spatial resolution of positron emission tomography

Med Phys. 1994 Dec;21(12):1917-20. doi: 10.1118/1.597178.

Abstract

Detector geometry, spatial sampling, and more fundamentally, positron range and noncollinearity of annihilation photon emission define Positron Emission Tomography (PET) spatial resolution. In this paper, a strong magnetic field is used to constrain positron travel transverse to the field. Measurement of the spread function from a 500 microns diameter 68Ga impregnated resin bead shows a squeezing of the full width at half maximum (FWHM) by a factor of 1.0, 1.22, 1.42, and 2.05, at 0, 4.0, 5.0, and 9.4 Tesla, respectively. The full width at tenth maximum (FWTM) decreases by a factor of 1.0, 1.73, 2.09, and 3.20, at 0, 4.0, 5.0, and 9.0 Tesla, respectively. Acquiring a PET image in a magnetic field should significantly reduce resolution loss due to positron range.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Biophysical Phenomena
  • Biophysics
  • Brain / diagnostic imaging
  • Humans
  • Magnetic Resonance Imaging
  • Magnetics*
  • Tomography, Emission-Computed / instrumentation
  • Tomography, Emission-Computed / methods*