Feasibility of PET Template-Based Analysis on F-18 FP-CIT PET in Patients with De Novo Parkinson's Disease

Nucl Med Mol Imaging. 2013 Jun;47(2):73-80. doi: 10.1007/s13139-013-0196-6. Epub 2013 Mar 26.

Abstract

Purpose: The aim of this study was to evaluate the feasibility of FP-CIT PET template-based quantitative analysis on F-18 FP-CIT PET in patients with de novo Parkinson's disease (PD), compared with MR-based and manual methods. We also assessed the correlation of quantitative parameters of those methods with clinical severity of the disease.

Methods: Forty patients with de novo PD underwent both MRI and F-18 FP-CIT PET. Images were spatially normalized to a standardized PET template. Mean counts of 4 ROIs: putamen, caudate, occipital cortex and cerebellum, were obtained using the quantification program, Korean Statistical Probabilistic Anatomical Map (KSPAM). Putamen-to-caudate ratio (PCR), asymmetry index (ASI), specific-to-nonspecific ratios with two different references: to occipital cortex (SOR) and cerebellum (SCR) were compared. Parameters were also calculated from manually drawn ROI method and MR-coregistrated method.

Results: All quantitative parameters showed significant correlations across the three different methods, especially between the PET-based and manual methods. Among them, PET-based SOR and SCR values showed an excellent correlation and concordance with those of manual method. In relationship with clinical severity, only ASI achieved significantly inverse correlations with H&Y stage and UPDRS motor score. There was no significant difference between the quantitative parameters of both occipital cortex and cerebellum in all three methods, which implied that quantitation using PET-based method could be reproducible regardless of the reference region.

Conclusions: Quantitative parameters using FP-CIT PET template-based method correlated well with those using laborious manual method with excellent concordance. Moreover, PET-based quantitation was less influenced by the reference region than MR-based method. It suggests that PET-based method can provide objective and quantitative parameters quickly and easily as a feasible analysis in place of conventional method.

Keywords: Dopamine transporter (DAT); F-18 FP-CIT PET; Korean statistical probabilistic anatomical map (KSPAM); Parkinson’s disease; Template-based quantitative analysis.