Relationship of regional cerebral blood flow and kinetic behaviour of O-(2-(18)F-fluoroethyl)-L-tyrosine uptake in cerebral gliomas

Nucl Med Commun. 2014 Mar;35(3):245-51. doi: 10.1097/MNM.0000000000000036.

Abstract

Objectives: O-(2-(18)F-fluoroethyl)-L-tyrosine ((18)F-FET) is an established tracer for brain tumour imaging. (18)F-FET kinetics in gliomas appear to have potential for tumour grading, but the mechanisms remain unclear. The aim of this study was to explore the relationship between regional cerebral blood flow (rCBF) as measured by arterial spin labelling MRI and the kinetic behaviour of (18)F-FET PET in cerebral gliomas.

Materials and methods: Twenty patients with cerebral gliomas were investigated using arterial spin labelling MRI and dynamic (18)F-FET PET. Time-activity curves (TACs) of (18)F-FET uptake were analysed in 33 different tumour regions. The slopes of TAC during the early (0-5 min; slopeup) and late phases of tracer uptake (17-50 min; slopedown) were fitted using linear regression lines. In addition, TACs of each lesion were assigned to different curve patterns. Furthermore, we calculated tumour-to-brain ratios of (18)F-FET uptake. The relationship between (18)F-FET parameters and rCBF was determined.

Results: (18)F-FET uptake in the early phase (slopeup) showed a significant correlation with rCBF (r=0.4; P=0.02). In contrast, both slopedown and TAC patterns showed no significant correlation with rCBF. Furthermore, a significant correlation was found between rCBF and tumour-to-brain ratio (r=0.53; P=0.002).

Conclusion: There is a relationship between rCBF and (18)F-FET uptake in cerebral gliomas in the initial uptake phase, but the kinetic behaviour of (18)F-FET uptake in the late phase is not significantly influenced by rCBF. Thus, the differential kinetic pattern of (18)F-FET uptake in high-grade and low-grade gliomas appears to be determined by factors other than rCBF.

MeSH terms

  • Adult
  • Aged
  • Biological Transport
  • Brain Neoplasms / diagnostic imaging*
  • Brain Neoplasms / metabolism
  • Brain Neoplasms / physiopathology*
  • Cerebrovascular Circulation*
  • Female
  • Glioma / diagnostic imaging*
  • Glioma / metabolism
  • Glioma / physiopathology*
  • Humans
  • Kinetics
  • Male
  • Middle Aged
  • Positron-Emission Tomography
  • Tyrosine / analogs & derivatives*
  • Tyrosine / metabolism

Substances

  • O-(2-fluoroethyl)tyrosine
  • Tyrosine