Advancing neurotrophic factors as treatments for age-related neurodegenerative diseases: developing and demonstrating "clinical proof-of-concept" for AAV-neurturin (CERE-120) in Parkinson's disease

Neurobiol Aging. 2013 Jan;34(1):35-61. doi: 10.1016/j.neurobiolaging.2012.07.018. Epub 2012 Aug 24.

Abstract

Neurotrophic factors have long shown promise as potential therapies for age-related neurodegenerative diseases. However, 20 years of largely disappointing clinical results have underscored the difficulties involved with safely and effectively delivering these proteins to targeted sites within the central nervous system. Recent progress establishes that gene transfer can now likely overcome the delivery issues plaguing the translation of neurotrophic factors. This may be best exemplified by adeno-associated virus serotype-2-neurturin (CERE-120), a viral-vector construct designed to deliver the neurotrophic factor, neurturin to degenerating nigrostriatal neurons in Parkinson's disease. Eighty Parkinson's subjects have been dosed with CERE-120 (some 7+ years ago), with long-term, targeted neurturin expression confirmed and no serious safety issues identified. A double-blind, controlled Phase 2a trial established clinical "proof-of-concept" via 19 of the 24 prescribed efficacy end points favoring CERE-120 at the 12-month protocol-prescribed time point and all but one favoring CERE-120 at the 18-month secondary time point (p = 0.007 and 0.001, respectively). Moreover, clinically meaningful benefit was seen with CERE-120 on several specific protocol-prescribed, pairwise, blinded, motor, and quality-of-life end points at 12 months, and an even greater number of end points at 18 months. Because the trial failed to meet the primary end point (Unified Parkinson's Disease Rating Scale motor-off, measured at 12 months), a revised multicenter Phase 1/2b protocol was designed to enhance the neurotrophic effects of CERE-120, using insight gained from the Phase 2a trial. This review summarizes the development of CERE-120 from its inception through establishing "clinical proof-of-concept" and beyond. The translational obstacles and issues confronted, and the strategies applied, are reviewed. This information should be informative to investigators interested in translational research and development for age-related and other neurodegenerative diseases.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Aging*
  • Animals
  • Genetic Therapy*
  • Genetic Vectors / physiology
  • Humans
  • Neurodegenerative Diseases / therapy*
  • Neurturin / biosynthesis
  • Neurturin / genetics
  • Neurturin / therapeutic use*
  • Parkinson Disease / therapy*

Substances

  • Neurturin