Quantitative Evaluation of Half-Cone-Beam Scan Paths in Triple-Camera Brain SPECT

IEEE Trans Nucl Sci. 2008 Oct 1;55(5):2518-2526. doi: 10.1109/TNS.2008.2003255.

Abstract

In this study related to human brain SPECT imaging, simulation of half-cone-beam (HCB) collimation with different scan paths is performed and compared with simulated fan-beam and parallel-hole circular orbit acquisitions of disk-phantom projection data. Acquisition types are quantitatively evaluated based on the photon detection efficiency, the root-mean-squared error, contrast and signal-to-noise ratio measurements of the reconstructed images. We demonstrate that a triple-camera SPECT system with half-cone-beam collimators and circle-and-helix scan paths can offer up to a 26% efficiency increase over fan-beam, and up to a 128% increase over parallel-hole collimators for equal spatial resolutions, and display no visible axial sampling artifacts in reconstructed disk-phantom images. In addition, we perform qualitative experimental evaluation of triple-HCB circle-and-helix acquisition using a Hoffman 3D brain phantom. Reconstructed brain phantom images show improved quality due to reduced noise and no apparent sampling artifacts. Triple-HCB circle-and-helix SPECT has a potential for improved brain imaging, producing higher image quality with a smaller reconstruction error and better lesion detectability due to increased efficiency for equal spatial resolution compared to conventional fan-beam and parallel-hole SPECT.