Whole-body MRI for the staging and follow-up of patients with metastasis

Eur J Radiol. 2009 Jun;70(3):393-400. doi: 10.1016/j.ejrad.2009.03.045. Epub 2009 May 19.

Abstract

The advent of whole-body MRI (WB-MRI) has introduced tumor imaging with a systemic approach compared to established sequential, multi-modal diagnostic algorithms. Hardware innovations, such as the introduction of multi-receiver channel whole-body scanners at 1.5 T and recently 3T, combined with acquisition acceleration techniques, have made high resolution WB-MRI clinically feasible. Now, a dedicated assessment of individual organs with various soft tissue contrast, spatial resolution and contrast media dynamics can be combined with whole-body anatomic coverage in a multi-planar imaging approach. More flexible protocols, e.g. including T1-weighted TSE- and STIR-imaging, dedicated lung imaging or dynamic contrast-enhanced studies of the abdomen can be performed within less than 45 min. For initial tumor staging PET-CT as a competing whole-body modality in oncologic imaging has proved more accurate for the definition of T-stage and lymph node assessment, using the additional metabolic information of PET for the assessment of tumor viability and therapy response. However, new applications, such as MR-whole-body diffusion imaging, may significantly increase sensitivity in near future. WB-MRI has shown advantages for the detection of distant metastatic disease, especially from tumors frequently spreading to the liver or brain and it is especially useful as a radiation-free alternative for the surveillance of tumor patients with multiple follow-up exams. Furthermore, it has been introduced as a whole-body bone marrow screening application. Within this context WB-MRI is highly accurate for the detection of skeletal metastases and staging of hematologic diseases, such as multiple myeloma or lymphoma. This article summarizes recent developments and applications of WB-MRI and highlights its performance within the scope of systemic oncologic staging and surveillance.

Publication types

  • Review

MeSH terms

  • Follow-Up Studies
  • Humans
  • Magnetic Resonance Imaging / methods*
  • Neoplasm Metastasis / pathology*
  • Neoplasm Staging / methods*
  • Neoplasms / diagnosis*
  • Radiopharmaceuticals
  • Whole Body Imaging / methods*

Substances

  • Radiopharmaceuticals