Direct time-of-flight for quantitative, real-time in-beam PET: a concept and feasibility study

Phys Med Biol. 2007 Dec 7;52(23):6795-811. doi: 10.1088/0031-9155/52/23/002. Epub 2007 Nov 6.

Abstract

We extrapolate the impact of recent detector and scintillator developments, enabling sub-nanosecond coincidence timing resolution (tau), onto in-beam positron emission tomography (in-beam PET) for monitoring charged-hadron radiation therapy. For tau < or = 200 ps full width at half maximum, the information given by the time-of-flight (TOF) difference between the two opposing gamma-rays enables shift-variant, artefact-free in-beam tomographic imaging by means of limited-angle, dual-head detectors. We present the corresponding fast, TOF-based and backprojection-free, 3D reconstruction algorithm that, coupled with a real-time data acquisition and a fast detector encoding scheme, allows the sampled beta+-activity to be visualized in the object during the course of the irradiation. Despite the very low statistics scenario typical of in-beam PET, real-treatment simulations show that in-beam TOF-PET enables high-precision images to be obtained in real-time, either with closed-ring or with fixed, dual-head in-beam TOF-PET systems. The latter greatly alleviates the installation of in-beam PET at radiotherapeutic sites.

MeSH terms

  • Algorithms*
  • Computer Systems
  • Feasibility Studies
  • Humans
  • Image Enhancement / methods*
  • Image Interpretation, Computer-Assisted / methods*
  • Imaging, Three-Dimensional / methods*
  • Information Storage and Retrieval / methods*
  • Positron-Emission Tomography / methods*
  • Reproducibility of Results
  • Sensitivity and Specificity