Cell death, tissue hypoxia and the progression of heart failure

Heart Fail Rev. 2000 Jun;5(2):131-8. doi: 10.1023/A:1009880720032.

Abstract

An important feature of heart failure is the progressive deterioration of left ventricular function that occurs in the absence of clinically apparent intercurrent adverse events. The mechanism or mechanisms responsible for this hemodynamic deterioration are not known. We and others have advanced the hypothesis that this hemodynamic deterioration results from progressive intrinsic contractile dysfunction of viable cardiomyocytes and/or from ongoing loss of cardiomyocytes. This review will focus on the concept of ongoing cardiac myocyte loss as a contributing factor to the progression of left ventricular dysfunction that characterizes the heart failure state. Specifically, the discussion will center on apoptosis or "programmed cell death" as a potential mediator of cardiomyocyte loss. In recent years, several studies have shown that constituent myocytes of failed explanted human hearts and hearts of animals with experimentally induced heart failure undergo apoptosis. Studies have also shown that cardiomyocyte apoptosis occurs following acute myocardial infarction, in the hypertrophied heart as well as in the aging heart; conditions frequently associated with the development of failure. While available data support the existence of myocyte apoptosis in the failing heart, lacking are studies which address the importance of myocyte apoptosis in the progression of LV dysfunction. As part of this discussion, we will address this issue and construct a case in support of a concept that the failing myocardium is subject to regional hypoxia, an abnormality that can potentially trigger cardiomyocyte apoptosis. If loss of cardiac myocytes through apoptosis can be shown to be an important contributor to the progression of heart failure, and if exact physiologic and molecular factors that trigger apoptosis in the heart can be identified, the stage will be set for the development of novel therapeutic modalities aimed at preventing, or at the very least retarding, the process of progressive ventricular dysfunction and the ultimate transition toward end-stage, intractable heart failure.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Apoptosis / physiology*
  • Cell Death / physiology
  • Cells, Cultured
  • Disease Models, Animal
  • Disease Progression
  • Dogs
  • Heart Failure / physiopathology*
  • Humans
  • Immunohistochemistry
  • Myocardial Ischemia / physiopathology*
  • Myocardium / pathology
  • Myocytes, Cardiac / cytology*
  • Myocytes, Cardiac / physiology
  • Reference Values
  • Sensitivity and Specificity
  • Ventricular Dysfunction, Left / physiopathology*