Design and synthesis of a new [18F]fluoropyridine-based haloacetamide reagent for the labeling of oligonucleotides: 2-bromo-N-[3-(2-[18F]fluoropyridin-3-yloxy)propyl]acetamide

Bioconjug Chem. 2004 May-Jun;15(3):617-27. doi: 10.1021/bc049979u.

Abstract

Based on the recently highlighted potential of nucleophilic heteroaromatic ortho-radiofluorinations in the preparation of fluorine-18-labeled radiotracers and radiopharmaceuticals for PET, a [(18)F]fluoropyridine-based bromoacetamide reagent has been prepared and used in prosthetic group introduction for the labeling of oligonucleotides. [(18)F]FPyBrA (2-bromo-N-[3-(2-[(18)F]fluoropyridin-3-yloxy)propyl]acetamide) was designed as a radiochemically feasible reagent, its pyridinyl moiety both carrying the radioactive halogen (fluorine-18) and allowing its efficient incorporation via a nucleophilic heteroaromatic substitution, and its 2-bromoacetamide function, ensuring the efficient alkylation of a phosphorothioate monoester group born at the 3'- or 5'-end of single-stranded oligonucleotides. [(18)F]FPyBrA (HPLC-purified) was efficiently prepared in 18-20% non-decay-corrected yield (based on starting [(18)F]fluoride) using a three-step radiochemical pathway in 80-85 min. The developed procedure involves (1) a high-yield nucleophilic heteroaromatic ortho-radiofluorination as the fluorine-18 incorporation-step (70-85% radiochemical yield) and uses [3-(3-tert-butoxycarbonylaminopropoxy)pyridin-2-yl]trimethylammonium trifluoromethanesulfonate as precursor for labeling, followed by (2) rapid and quantitative TFA-removal of the N-Boc-protective group and (3) condensation with 2-bromoacetyl bromide (45-65% radiochemical yield). Typically, 3.3-3.7 GBq (90-100 mCi) of HPLC-purified [(18)F]FPyBrA could be obtained in 80-85 min, starting from 18.5 GBq (500 mCi) of a cyclotron production batch of [(18)F]fluoride. [(18)F]FPyBrA was regioselectively conjugated with 9-mer and 18-mer single-stranded oligonucleotides, provided with a phosphorothioate monoester group at their 3'-end. Both natural phosphodiester DNAs and in vivo-stable 2'-methoxy and -fluoro-modified RNAs were used. Conjugation uses optimized, short-time reaction conditions (MeOH/0.1 M PBS pH 7.4, 15 min, 120 degrees C), both compatible with the chemical stability of the oligonucleotides (ONs) and the half-life of fluorine-18. Conjugated [(18)F]ONs were finally purified by RP-HPLC and desalted using a Sephadex NAP-10 column. The whole radiosynthetic procedure, including the preparation of the fluorine-18-labeled reagent, the conjugation with the oligonucleotide, and the HPLC purification and formulation lasted 140-160 min. [(18)F]FPyBrA represents a valuable alternative to the already reported N-(4-[(18)F]fluorobenzyl)-2-bromoacetamide for the design and development of oligonucleotide-based radiopharmaceuticals for PET.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acetamides / chemical synthesis*
  • Acetamides / chemistry
  • Drug Design
  • Fluorine Radioisotopes / chemistry*
  • Halogens / chemistry*
  • Isotope Labeling
  • Molecular Structure
  • Oligonucleotides / chemical synthesis
  • Oligonucleotides / chemistry*
  • Pyridines / chemical synthesis*
  • Pyridines / chemistry*
  • Tomography, Emission-Computed / methods

Substances

  • 2-bromo-N-(3-(2-fluoropyridin-3-yloxy)propyl)acetamide
  • Acetamides
  • Fluorine Radioisotopes
  • Halogens
  • Oligonucleotides
  • Pyridines