A rare earth-DOTA-binding antibody: probe properties and binding affinity across the lanthanide series

J Am Chem Soc. 2003 Mar 26;125(12):3436-7. doi: 10.1021/ja029363k.

Abstract

An antibody that binds rare earth complexes selectively could be used as a docking station for a set of probe molecules, of particular interest for medical imaging and therapy. The rare earths are rich in probe properties, such as the paramagnetism of Gd, the luminescence of Tb and Eu, and the nuclear properties of Lu and Y. We find that antibody 2D12.5, initially developed to bind analogues of Y-DOTA (1,4,7,10-tetraazacyclododecane-N,N',N' ',N' ''-tetraacetic acid) for radiotherapy, binds not only Y-DOTA analogues but also analogous DOTA complexes of all of the lanthanides. Surprisingly, chelates of some metals such as Gd3+ bind more tightly than the original Y3+ complex. When the shape of the complex is perturbed by either increasing or decreasing the radius of the lanthanide ion, the thermodynamic stability of the protein-ligand complex changes in a regular fashion. The behavior of DeltaDeltaG as a function of ionic radius fits a parabola, as might be expected for a system that behaves in a thermodynamically elastic way. The broad specificity and high affinity of this antibody for all rare earth-DOTA complexes make it particularly interesting for applications that take advantage of the unique characteristics of lanthanides. For example, UV excitation of the Tb-DOTA-2D12.5 complex leads to energy transfer from aromatic side chains of the antibody to bound Tb-DOTA, enhancing green terbium luminescence >104 relative to unbound Tb-DOTA.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Antibodies, Monoclonal / chemistry*
  • Antibodies, Monoclonal / immunology
  • Antibodies, Monoclonal / metabolism
  • Antibody Specificity
  • Heterocyclic Compounds, 1-Ring / chemistry*
  • Humans
  • Immunoassay / methods
  • Immunoconjugates / chemistry*
  • Immunoconjugates / immunology
  • Immunoconjugates / metabolism
  • Kinetics
  • Lanthanoid Series Elements / chemistry*
  • Lanthanoid Series Elements / immunology
  • Lanthanoid Series Elements / metabolism
  • Organometallic Compounds / chemistry
  • Serum Albumin / chemistry
  • Thermodynamics

Substances

  • Antibodies, Monoclonal
  • Heterocyclic Compounds, 1-Ring
  • Immunoconjugates
  • Lanthanoid Series Elements
  • Organometallic Compounds
  • Serum Albumin
  • 1,4,7,10-tetraazacyclododecane- 1,4,7,10-tetraacetic acid