In vivo fatigue loading of the rat ulna induces both bone formation and resorption and leads to time-related changes in bone mechanical properties and density

J Orthop Res. 2002 Jul;20(4):764-71. doi: 10.1016/S0736-0266(01)00161-9.

Abstract

Fatigue loading triggers bone resorption and is associated with stress fractures. Neither the osteogenic response nor the changes in bone mechanical properties following in vivo fatigue loading have been quantified. To further characterize the skeletal response to fatigue loading, we assessed bone formation, mechanical properties, density and resorption in the ulnae of 72 adult rats subjected to a single bout of in vivo loading followed by 0, 6, 12 or 18 days of recovery. Axial, compressive loading (peak force 13.3 N, 2 Hz) was applied to the right forelimb until the ulna was fatigued to a pre-determined level. The left forelimb served as a contralateral control. The primary osteogenic response to fatigue loading was woven bone formation that occurred on the periosteal surface of the ulnar diaphysis and was significantly greater in loaded limbs versus controls at 6, 12 and 18 days (p <.0.05). Ultimate force of the ulna in three-point bending decreased by 50% and stiffness decreased by 70% on day 0 (p < 0.01 vs. control), indicative of acute fatigue damage. By day 12, ultimate force and stiffness had returned to control levels (p > 0.05) and by day 18 had increased 20% beyond controls (p < 0.01). Bone cross-sectional area, moment of inertia, and mineral content increased with recovery time (p < 0.01), consistent with the increases in woven bone formation and mechanical properties. Intracortical resorption space density and osteoclast density also increased with recovery time (p < 0.05), indicating activation of intracortical remodeling. In summary, our findings demonstrate the remarkable ability of the adult skeleton to rapidly form periosteal woven bone and thereby offset the negative structural effects of acute fatigue damage and subsequent intracortical resorption.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Biomechanical Phenomena
  • Bone Density*
  • Bone Resorption*
  • Female
  • Fractures, Stress / physiopathology*
  • Osteogenesis*
  • Rats
  • Rats, Inbred F344
  • Ulna / physiology*