Immunohistochemical localization and quantification of glucose transporters in the mouse brain

Neuroscience. 2002;111(1):19-34. doi: 10.1016/s0306-4522(01)00619-4.

Abstract

A family of seven facilitative glucose transporters (Glut1-5, 7 and 8) mediates the cellular uptake of glucose. In the brain, Glut2, Glut5 and Glut8 are found at relatively low levels whereas Glut1, Glut3 and Glut4 were reported in abundance in several brain regions. Using immunofluorescence, this study investigated, compared and quantified the localization of the brain major glucose transporters, Glut1, Glut3 and Glut4, in the different cerebral areas of CD1 mice. Most of the staining of Glut1, Glut3 and Glut4 in the mouse brain coincides with observations made in rats. The results confirm the cortical neuropil distribution of Glut3, the prominence of this transporter in the mossy fiber field of the hippocampus and the Glut3 and Glut4 immunostaining of the hippocampal pyramidal cell layer. The present study also reports novel localizations of the transporters such as the presence of Glut3 in neuronal perikarya, Glut4-labeled neurons in the CA3 of the hippocampus and the subiculum. In the cerebellum, Glut3 shows subcellular localization to the base of the Purkinje cell bodies near the axon hillock. Furthermore, an important population of Golgi cells was found to be strongly immunostained for Glut4 in the granular cell layer of the cerebellum. The quantification results suggest that the relative abundance of Glut1 in the frontal and motor cortices coincides well with the high-energy demands of these brain regions. However, the Glut4-selective abundance in cerebral motor areas supports its suggested role in providing the energy needed for the control of the motor activity. The reported neuropil distribution of Glut3 seems to uphold its suggested role in synaptic energy provision and neurotransmitter synthesis. We conclude that the cellular and regional distributions of the glucose transporters in the rodent brain seem to be relevant to their corresponding functions.

MeSH terms

  • Animals
  • Brain / metabolism*
  • Glucose Transporter Type 1
  • Glucose Transporter Type 3
  • Glucose Transporter Type 4
  • Immunohistochemistry
  • Male
  • Mice
  • Mice, Inbred Strains
  • Monosaccharide Transport Proteins / metabolism*
  • Muscle Proteins*
  • Nerve Tissue Proteins*
  • Tissue Distribution

Substances

  • Glucose Transporter Type 1
  • Glucose Transporter Type 3
  • Glucose Transporter Type 4
  • Monosaccharide Transport Proteins
  • Muscle Proteins
  • Nerve Tissue Proteins
  • Slc2a1 protein, mouse
  • Slc2a3 protein, mouse
  • Slc2a4 protein, mouse