Cardiomyocyte grafting for cardiac repair: graft cell death and anti-death strategies

J Mol Cell Cardiol. 2001 May;33(5):907-21. doi: 10.1006/jmcc.2001.1367.

Abstract

M. Zhang, D. Methot, V. Poppa, Y. Fujio, K. Walsh and C. E. Murry. Cardiomyocyte Grafting for Cardiac Repair: Graft Cell Death and Anti-Death Strategies. Journal of Molecular and Cellular Cardiology (2001) 33, 907-921. Recent studies indicate that cardiomyocyte grafting forms new myocardium in injured hearts. It is unknown, however, whether physiologically significant amounts of new myocardium can be generated. Pilot experiments showed that death of grafted rat neonatal cardiomyocytes limited formation of new myocardium after acute cryoinjury. Time-course studies showed that, at 30 min after grafting, only 1.8(+/-0.4)% of graft cells were TUNEL-positive. At 1 day, however, TUNEL indices increased to 32.1(+/-3.5)% and remained high at 4 days, averaging 9.8(+/-3.8)%. By 7 days, TUNEL decreased to 1.0(+/-0.2)%. Electron microscopy revealed that dead cells had features of both irreversible ischemic injury and apoptosis. To test whether ischemia contributed to poor graft survival, grafts were placed into vascularized 2-week-old cardiac granulation tissue or normal myocardium. TUNEL indices were reduced by 53% and 86%, respectively. Adenoviral infection of graft cells with the cytoprotective kinase Akt, or constitutively active Akt, reduced TUNEL indices by 31% and 40%, respectively, compared to beta -gal-transfected controls. Neither treatment reached statistical significance compared to untreated controls, however. Heat shock reduced cardiomyocyte death in vitro in response to serum deprivation, glucose depletion, and viral activation of the Fas death pathway. When cardiomyocytes were heat shocked prior to grafting, graft cell death in vivo was reduced by 54% at day 1. Therefore, high levels of cardiomyocyte death occur for at least 4 days after grafting into injured hearts, in large part due to ischemia. Death can be limited by activating the Akt pathway and even more effectively by heat shock prior to transplantation.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adenoviridae / genetics
  • Animals
  • Blotting, Western
  • Cell Death
  • Cell Survival
  • Cells, Cultured
  • Culture Media, Serum-Free / metabolism
  • Hot Temperature
  • In Situ Nick-End Labeling
  • Ischemia
  • Male
  • Microscopy, Electron
  • Myocardium / cytology*
  • Myocardium / metabolism*
  • Myocardium / ultrastructure
  • Necrosis
  • Protein Serine-Threonine Kinases*
  • Proto-Oncogene Proteins / metabolism
  • Proto-Oncogene Proteins c-akt
  • Rats
  • Rats, Inbred F344
  • Time Factors
  • Tissue Transplantation / methods*

Substances

  • Culture Media, Serum-Free
  • Proto-Oncogene Proteins
  • Akt1 protein, rat
  • Protein Serine-Threonine Kinases
  • Proto-Oncogene Proteins c-akt