The tenascin family of ECM glycoproteins: structure, function, and regulation during embryonic development and tissue remodeling

Dev Dyn. 2000 Jun;218(2):235-59. doi: 10.1002/(SICI)1097-0177(200006)218:2<235::AID-DVDY2>3.0.CO;2-G.

Abstract

The determination of animal form depends on the coordination of events that lead to the morphological patterning of cells. This epigenetic view of development suggests that embryonic structures arise as a consequence of environmental influences acting on the properties of cells, rather than an unfolding of a completely genetically specified and preexisting invisible pattern. Specialized cells of developing multicellular organisms are surrounded by a complex extracellular matrix (ECM), comprised largely of different collagens, proteoglycans, and glycoproteins. This ECM is a substrate for tissue morphogenesis, lends support and flexibility to mature tissues, and acts as an epigenetic informational entity in the sense that it transduces and integrates intracellular signals via distinct cell surface receptors. Consequently, ECM-receptor interactions have a profound influence on major cellular programs including growth, differentiation, migration, and survival. In contrast to many other ECM proteins, the tenascin (TN) family of glycoproteins (TN-C, TN-R, TN-W, TN-X, and TN-Y) display highly restricted and dynamic patterns of expression in the embryo, particularly during neural development, skeletogenesis, and vasculogenesis. These molecules are reexpressed in the adult during normal processes such as wound healing, nerve regeneration, and tissue involution, and in pathological states including vascular disease, tumorigenesis, and metastasis. In concert with a multitude of associated ECM proteins and cell surface receptors that include members of the integrin family, TN proteins impart contrary cellular functions, depending on their mode of presentation (i.e., soluble or substrate-bound) and the cell types and differentiation states of the target tissues. Expression of tenascins is regulated by a variety of growth factors, cytokines, vasoactive peptides, ECM proteins, and biomechanical factors. The signals generated by these factors converge on particular combinations of cis-regulatory elements within the recently identified TN gene promoters via specific transcriptional activators or repressors. Additional complexity in regulating TN gene expression is achieved through alternative splicing, resulting in variants of TN polypeptides that exhibit different combinations of functional protein domains. In this review, we discuss some of the recent advances in TN biology that provide insights into the complex way in which the ECM is regulated and how it functions to regulate tissue morphogenesis and gene expression.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Adult
  • Animals
  • Gene Expression Regulation, Developmental*
  • Glycoproteins / metabolism*
  • Glycoproteins / physiology
  • Humans
  • Ligands
  • Mice
  • Mice, Knockout
  • Morphogenesis
  • Protein Structure, Tertiary
  • Tenascin / genetics
  • Tenascin / metabolism*
  • Tenascin / physiology

Substances

  • Glycoproteins
  • Ligands
  • Tenascin