Skip to main content
Log in

Monoclonal Antibodies in the Treatment of Non-Hodgkin’s Lymphoma

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Antibody-based therapeutic approaches have had a significant impact in the treatment of non-Hodgkin’s lymphoma (NHL). Rituximab’s development as an anti-CD20 antibody heralded a new era in treatment approaches for NHL. While rituximab was first shown to be effective in the treatment of relapsed follicular lymphoma, it is now standard monotherapy for front-line treatment of follicular lymphoma, and is also used in conjunction with chemotherapy for other indolent, intermediate and aggressive B-cell lymphomas. The development of rituximab has led to intense interest in this type of therapeutic approach and to development and approval of the radioimmunoconjugates of rituximab, 90Y-ibritumomab tiuxetan and 131I-tositumomab, which have added to the repertoire of treatments for relapsed follicular lymphoma and increased interest in developing other conjugated antibodies. Since rituximab is a chimeric antibody, there is a need to develop fully humanised antibodies, such as IMMU-106 (hA20), in order to minimise infusion reactions and eliminate the development of human antibodies against the drug.

Further clinical evaluation of antibodies has been based largely on our knowledge of antigen expression on the surface of lymphoma cells and has led to the development of antibodies against CD22 (unconjugated epratuzumab and calicheamicin conjugated CMC-544 [inotuzumab ozogamicin]), CD80 (galiximab), CD52 (alemtuzumab), CD2 (MEDI-507 [siplizumab]), CD30 (SGN-30 and MDX-060 [iratumumab]), and CD40 (SGN-40). Furthermore, the VEGF (vascular endothelial growth factor) inhibitor bevacizumab, which was first approved for the treatment of colon cancer is currently under investigation in NHL, and agonists rather than antibodies to TRAIL (tumour necrosis factor-related apoptosis-inducing ligand) [rApo2L/TRAIL, HGS-ETRl{mapatumumab}, HGS-ETR2] are currently being investigated as treatments for both advanced solid tumours and NHL. Knowledge of the ability of cancer cells to become resistant to a targeted therapy by activating an alternative pathway to evade apoptosis has driven studies that combine antibodies such as epratuzumab plus rituximab (ER) or ER plus chemotherapy with CHOP (cyclophosphamide, doxorubicin, vincristine, and prednisone) [ER-CHOP], inotuzumab ozogamicin plus rituximab, alemtuzumab plus CHOP (CHOP-C), bevacizumab plus rituximab, and now the combination of rApo2L/TRAIL plus rituximab.

As a result of the expansion of research in this area, several treatment-specific adverse effects have been noted, including infusion-related reactions for rituximab, myelosuppression secondary to 90Y-ibritumomab tiuxetan and 131I-tositumomab, and immunosuppression leading to infectious complications for alemtuzumab. Also, soluble forms of the antigens (sCD30) are now being investigated as potential mechanisms of resistance to antibody treatments by binding the antibody before the drug can bind to the lymphoma cell. In addition, it has also become apparent that these antibodies often have a dose-dependent half-life (rituximab) or long half-lives of up to 2–3 weeks (epratuzumab and galiximab) with a consequent delay to a response, thus influencing how long we should wait for a response before declaring an antibody to be ineffective.

Antibody-based therapeutic approaches have already had a profound impact on the treatment of NHL, and it is almost certain that, as their clinical development progresses, we will continue to refine the optimum methods of incorporating these drugs in NHL treatment in order to offer our patients the best clinical benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Fig. 1
Table II

Similar content being viewed by others

References

  1. Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975; 256 (5517): 495–7

    Article  PubMed  CAS  Google Scholar 

  2. Reilly RM, Sandhu J, Alvarez-Diez TM, et al. Problems of delivery of monoclonal antibodies: pharmaceutical and pharmacokinetic solutions. Clin Pharmacokinet 1995; 28 (2): 126–42

    Article  PubMed  CAS  Google Scholar 

  3. Winter G, Harris WJ. Humanized antibodies. Immunol Today 1993; 14 (6): 243–6

    Article  PubMed  CAS  Google Scholar 

  4. Levene AP, Singh G, Palmieri C. Therapeutic monoclonal antibodies in oncology. J R Soc Med 2005; 98 (4): 146–52

    Article  PubMed  CAS  Google Scholar 

  5. Uchida J, Lee Y, Hasegawa M, et al. Mouse CD20 expression and function. Int Immunol 2004; 16 (1): 119–29

    Article  PubMed  CAS  Google Scholar 

  6. Cragg MS, Walshe CA, Ivanov AO, et al. The biology of CD20 and its potential as a target for mAb therapy. Curr Dir Autoimmun 2005; 8: 140–74

    Article  PubMed  CAS  Google Scholar 

  7. Harjunpaa A, Junnikkala S, Meri S. Rituximab (anti-CD20) therapy of B-cell lymphomas: direct complement killing is superior to cellular effector mechanisms. Scand J Immunol 2000; 51 (6): 634–41

    Article  PubMed  CAS  Google Scholar 

  8. Golay J, Manganini M, Facchinetti V, et al. Rituximab-mediated antibody-dependent cellular cytotoxicity against neoplastic B cells is stimulated strongly by interleukin-2. Haematologica 2003; 88 (9): 1002–12

    PubMed  CAS  Google Scholar 

  9. Byrd JC, Murphy T, Howard RS, et al. Rituximab using a thrice weekly dosing schedule in B-cell chronic lymphocytic leukemia and small lymphocytic lymphoma demonstrates clinical activity and acceptable toxicity. J Clin Oncol 2001; 19(8): 2153–64

    PubMed  CAS  Google Scholar 

  10. McLaughlin P, Grillo-Lopez AJ, Link BK, et al. Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J Clin Oncol 1998; 16 (8): 2825–33

    PubMed  CAS  Google Scholar 

  11. Davis TA, Grillo-Lopez AJ, White CA, et al. Rituximab anti-CD20 monoclonal antibody therapy in non-Hodgkin’s lymphoma: safety and efficacy of re-treatment. J Clin Oncol 2000; 18 (17): 3135–43

    PubMed  CAS  Google Scholar 

  12. Ghielmini M, Schmitz S-FH, Cogliatti SB, et al. Prolonged treatment with rituximab in patients with follicular lymphoma significantly increases event-free survival and response duration compared with the standard weekly x 4 schedule. Blood 2004; 103 (12): 4416–23

    Article  PubMed  CAS  Google Scholar 

  13. Hainsworth JD, Litchy S, Shaffer DW, et al. Maximizing therapeutic benefit of rituximab: maintenance therapy versus retreatment at progression in patients with indolent non-Hodgkin’s lymphoma: a randomized phase II trial of the Minnie Pearl Cancer Research Network. J Clin Oncol 2005; 23 (6): 1088–95

    Article  PubMed  CAS  Google Scholar 

  14. Hochster HS, Weller E, Gascoyne RD, et al. Maintenance rituximab after CVP results in superior clinical outcome in advanced follicular lymphoma (FL): results of the E1496 phase III trial from the Eastern Cooperative Oncology Group and the Cancer and Leukemia Group B [abstract no. 349]. Blood 2005; 106 (11): 106a

    Google Scholar 

  15. Hiddemann W, Forstpointner R, Dreyling M, et al. Rituximab maintenance following a rituximab containing chemotherapy significantly prolongs the duration of response in patients with relapsed follicular and mantle cell lymphomas: results of a prospective randomized trial of the German Low Grade Lymphoma Study Group (GLSG) [abstract no. 6527]. J Clin Oncol 2005; 23 (16S Pt 1): 566s

    Google Scholar 

  16. Colocci N, Weller E, Hochster HS, et al. Prognostic significance of the follicular lymphoma international prognostic index (FLIPI) in the E1496 trial of chemotherapy with or without maintenance rituximab [abstract no. 6526]. J Clin Oncol 2005; 23 (16S Pt 1): 566s

    Google Scholar 

  17. Hiddemann W, Forstpointner R, Dreyling M, et al. Rituximab maintenance prolongs response duration after salvage therapy with R-FCM in patients with relapsed follicular lymphomas and mantle cell lymphomas: results of a prospective randomized trial of the German Low Grade Lymphoma Study Group (GLSG) [abstract 920]. Blood 2005; 106 (11): 170a

    Google Scholar 

  18. Van Oers MHJ, Van Glabbeke M, et al. Chimeric anti-CD20 monoclonal antibody (rituximab; mabthera) in remission induction and maintenance treatment of relapsed/resistant follicular non-Hodgkin’s lymphoma: final analysis of a phase III randomized intergroup clinical trial [abstract no. 353]. Blood 2005; 106 (11): 107a

    Google Scholar 

  19. Czuczman MS, Weaver R, Alkuzweny B, et al. Prolonged clinical and molecular remission in patients with low-grade or follicular non-Hodgkin’s lymphoma treated with rituximab plus CHOP chemotherapy: 9-year follow-up. J Clin Oncol 2004; 22 (23): 4711–6

    Article  PubMed  CAS  Google Scholar 

  20. McLaughlin MA, Rodriguez FB, Hagemeister J, et al. Stage IV indolent lymphoma: a randomized study of concurrent vs. sequential use of FND chemotherapy (fludarabine, mitoxantrone, dexamethasone) and rituximab (R) monoclonal antibody therapy, with interferon maintenance [abstract no. 2269]. 39th Annual Meeting of the American Society of Clinical Oncology; 2003 May 31–Jun 3; Chicago (IL). Proc Am Soc Clin Oncol 2003; 22: 564

    Google Scholar 

  21. Coiffier B, Lepage E, Briere J, et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med 2002; 346 (4): 235–42

    Article  PubMed  CAS  Google Scholar 

  22. Miller TP, Unger JM, Spier C, et al. Effect of adding rituximab to three cycles of CHOP plus involved-field radiotherapy for limited-stage aggressive diffuse B-cell lymphoma (SWOG-0014) [abstract no. 158]. Blood 2004; 104 (11): 48a

    Google Scholar 

  23. Pfreundschuh M, Kloess M, Schmits R, et al. Six, not eight cycles of bi-weekly CHOP with rituximab (R-CHOP-14) is the preferred treatment for elderly patients with diffuse large B-cell lymphoma (DLBCL): results of the RICOVER-60 trial of the German high-grade non-Hodgkin lymphoma Study Group (DSHNHL) [abstract no. 13]. Blood 2005; 106 (11): 9a

    Google Scholar 

  24. Romaguera JE, Fayad L, Rodriguez MA, et al. High rate of durable remissions after treatment of newly diagnosed aggressive mantle-cell lymphoma with rituximab plus hyper-CVAD alternating with rituximab plus high-dose methotrexate and cytarabine. J Clin Oncol 2005; 23 (28): 7013–23

    Article  PubMed  CAS  Google Scholar 

  25. Morschhauser F, Leonard J, Coiffier B, et al. Initial safety and efficacy results of a second-generation humanized anti-CD20 antibody, IMMU-106 (hA20), in non-Hodgkin’s lymphoma [abstract no. 2428]. Blood 2005; 106 (11): 683a

    Google Scholar 

  26. Witzig TE, White CA, Wiseman GA, et al. Phase I/II trial of IDEC-Y2B8 radioimmunotherapy for treatment of relapsed or refractory CD20(+) B-cell non-Hodgkin’s lymphoma. J Clin Oncol 1999; 17 (12): 3793–803

    PubMed  CAS  Google Scholar 

  27. Witzig TE, Flinn IW, Gordon LI, et al. Treatment with ibritumomab tiuxetan radioimmunotherapy in patients with rituximab-refractory follicular non-Hodgkin’s lymphoma. J Clin Oncol 2002; 20 (15): 3262–9

    Article  PubMed  CAS  Google Scholar 

  28. Witzig TE, Gordon LI, Cabanillas F, et al. Randomized controlled trial of yttrium-90-labeled ibritumomab tiuxetan radioimmunotherapy versus rituximab immunotherapy for patients with relapsed or refractory low-grade, follicular, or transformed B-cell non-Hodgkin’s lymphoma. J Clin Oncol 2002; 20 (10): 2453–63

    Article  PubMed  CAS  Google Scholar 

  29. Kaminski MS, Zelenetz AD, Press OW, et al. Pivotal study of iodine I 131 tositumomab for chemotherapy-refractory lowgrade or transformed low-grade B-cell non-Hodgkin’s lymphomas. J Clin Oncol 2001; 19(19): 3918–28

    PubMed  CAS  Google Scholar 

  30. Kaminski MS, Tuck M, Estes J, et al. 131I-tositumomab therapy as initial treatment for follicular lymphoma. N Engl J Med 2005; 352 (5): 441–9

    Article  PubMed  CAS  Google Scholar 

  31. Kaminski MS, Estes J, Regan D. Front-line treatment of advanced B-cell low-grade lymphoma with radiolabelled anti-B1 antibody: initial experience [abstract no. 51]. 33rd Annual Meeting of the American Society of Clinical Oncology; 1997 May 17–20; Denver (CO). Proc Am Soc Clin Oncol 1997; 16: 15a

    Google Scholar 

  32. Press OW, Unger JM, Braziel RM, et al. A phase 2 trial of CHOP chemotherapy followed by tositumomab/iodine I 131 tositumomab for previously untreated follicular non-Hodgkin lymphoma: Southwest Oncology Group Protocol S9911. Blood 2003; 102 (5): 1606–12

    Article  PubMed  CAS  Google Scholar 

  33. Sato S, Tuscano JM, Inaoki M, et al. CD22 negatively and positively regulates signal transduction through the B lymphocyte antigen receptor. Semin Immunol 1998; 10 (4): 287–97

    Article  PubMed  CAS  Google Scholar 

  34. Leonard JP, Coleman M, Ketas JC, et al. Epratuzumab, a humanized anti-CD22 antibody, in aggressive non-Hodgkin’s lymphoma: phase I/II clinical trial results. Clin Cancer Res 2004; 10 (16): 5327–34

    Article  PubMed  CAS  Google Scholar 

  35. Leonard JP, Coleman M, Ketas J, et al. Combination antibody therapy with epratuzumab and rituximab in relapsed or refractory non-Hodgkin’s lymphoma. J Clin Oncol 2005; 23 (22): 5044–51

    Article  PubMed  CAS  Google Scholar 

  36. Micallef IN, Kahl BS, Gayko U, et al. Initial results of a pilot study of epratuzuamab and rituximab in combination with cehmotherapy (ER-CHOP) in previously untreated patients with diffuse large B-cell lymphoma [abstract no. 6580]. 40th Annual Meeting of the American Society of Clinical Oncology; 2004 Jun 5–8; New Orleans (LA). Proc Am Soc Clin Oncol 2004; 23: 575

    Google Scholar 

  37. Linden O, Hindorf C, Cavallin-Stahl E, et al. Dose-fractionated radioimmunotherapy in non-Hodgkin’s lymphoma using DOTA-conjugated, 90Y-radiolabeled, humanized anti-CD22 monoclonal antibody, epratuzumab. Clin Cancer Res 2005; 11 (14): 5215–22

    Article  PubMed  CAS  Google Scholar 

  38. Advani A, Gine E, Gisselbrecht C, et al. Preliminary report of a phase I study of CMC-544, an antibody-targeted chemotherapy agent, in patients with B-cell non-Hodgkin’s lymphoma (NHL) [abstract no. 230]. Blood 2005; 106 (11): 71a

    Google Scholar 

  39. McCarron PA, Olwill SA, Marouf WMY, et al. Antibody conjugates and therapeutic strategies. Mol Interv 2005; 5 (6): 368–80

    Article  PubMed  CAS  Google Scholar 

  40. DiJoseph JF, Armellino DC, Doughter MM, et al. Antibodytargeted chemotherapy with immunoconjugates of calicheamicin: differential anti-tumor activity of conjugated calicheamicin targeted to B-cell lymphoma via B-cell lineage specific molecules CD19, CD20, and CD22 [abstract no. 2490]. Blood 2004; 104 (11): 683a

    Google Scholar 

  41. Hernandez-Ilizaiturri FJ, Devineni S, Arora S, et al. Targeting CD20 and CD22 with rituximab in combination with CMC-544 results in improved anti-tumor activity against non-Hodgkin’s lymphoma (NHL) pre-clinical models [abstract no. 1473]. Blood 2005; 106 (11): 425a

    Google Scholar 

  42. Schultze J, Nadler LM, Gribben JG. B7-mediated costimulation and the immune response. Blood Rev 1996; 10 (2): 111–27

    Article  PubMed  CAS  Google Scholar 

  43. June CH, Bluestone JA, Nadler LM, et al. The B7 and CD28 receptor families. Immunol Today 1994; 15 (7): 321–31

    Article  PubMed  CAS  Google Scholar 

  44. Vyth-Dreese FA, Dellemijn TA, Majoor D, et al. Localization in situ of the co-stimulatory molecules B7.1, B7.2, CD40 and their ligands in normal human lymphoid tissue. Eur J Immunol 1995; 25 (11): 3023–9

    Article  PubMed  CAS  Google Scholar 

  45. Dorfman DM, Schultze JL, Shahsafaei A, et al. In vivo expression of B7-1 and B7-2 by follicular lymphoma cells can prevent induction of T cell anergy but is insufficient to induce significant T cell proliferation. Blood 1997; 90: 4297–306

    PubMed  CAS  Google Scholar 

  46. Trentin L, Zambello R, Sancetta R, et al. B lymphocytes from patients with chronic lymphoproliferative disorders are equipped with different costimulatory molecules. Cancer Res 1997; 57 (21): 4940–7

    PubMed  CAS  Google Scholar 

  47. Vooijs WC, Otten HG, van Vliet M, et al. B7-1 (CD80) as target for immunotoxin therapy for Hodgkin’s disease. Br J Cancer 1997; 76 (9): 1163–9

    Article  PubMed  CAS  Google Scholar 

  48. Nozawa Y, Wakasa H, Abe M. Costimulatory molecules (CD80 and CD86) on Reed-Sternberg cells are associated with the proliferation of background T cells in Hodgkin’s disease. Pathol Int 1998; 48 (1): 10–4

    Article  PubMed  CAS  Google Scholar 

  49. Munro JM, Freedman AS, Aster JC, et al. In vivo expression of the B7 costimulatory molecule by subsets of antigen-presenting cells and the malignant cells of Hodgkin’s disease. Blood 1994; 83 (3): 793–8

    PubMed  CAS  Google Scholar 

  50. Plumas J, Chaperot L, Jacob M, et al. Malignant B lymphocytes from non-Hodgkin’s lymphoma induce allogeneic proliferative and cytotoxic T cell responses in primary mixed lymphocyte cultures: an important role of co-stimulatory molecules CD80 (B7-1) and CD86 (B7-2) in stimulation by tumor cells. Eur J Immunol 1995; 25 (12): 3332–41

    Article  PubMed  CAS  Google Scholar 

  51. Younes A, Hariharan K, Allen RS, et al. Initial trials of anti-CD80 monoclonal antibody (galiximab) therapy for patients with relapsed or refractory follicular lymphoma. Clin Lymphoma 2003; 3 (4): 257–9

    Article  PubMed  CAS  Google Scholar 

  52. Czuczman MS, Thall A, Witzig TE, et al. Phase I/II study of galiximab, an anti-CD80 antibody, for relapsed or refractory follicular lymphoma. J Clin Oncol 2005; 23 (19): 4390–8

    Article  PubMed  CAS  Google Scholar 

  53. Wierda WG, Kipps TJ, Keating MJ. Novel immune-based treatment strategies for chronic lymphocytic leukaemia. J Clin Oncol 2005; 23 (26): 6325–32

    Article  PubMed  CAS  Google Scholar 

  54. Keating MJ, Flinn I, Jain V, et al. Therapeutic role of alemtuzumab (Campath-1H) in patients who have failed fludarabine: results of a large international study. Blood 2002; 99(10): 3554–61

    Article  PubMed  CAS  Google Scholar 

  55. Lundin J, Hagberg H, Repp R, et al. Phase 2 study of alemtuzumab (anti-CD52 monoclonal antibody) in patients with advanced mycosis fungoides/Sezary syndrome. Blood 2003; 101 (11): 4267–72

    Article  PubMed  CAS  Google Scholar 

  56. Kennedy GA, Seymour JF, Wolf M, et al. Treatment of patients with advanced mycosis fungoides and Sezary syndrome with alemtuzumab. Eur J Haematol 2003; 71 (4): 250–6

    Article  PubMed  CAS  Google Scholar 

  57. Enblad G, Hagberg H, Erlanson M, et al. A pilot study of alemtuzumab (anti-CD52 monoclonal antibody) therapy for patients with relapsed or chemotherapy-refractory peripheral T-cell lymphomas. Blood 2004; 103 (8): 2920–4

    Article  PubMed  CAS  Google Scholar 

  58. Zinzani PL, Alinari L, Tani M, et al. Preliminary observations of a phase II study of reduced-dose alemtuzumab treatment in patients with pretreated T-cell lymphoma. Haematologica 2005; 90 (5): 702–3

    PubMed  CAS  Google Scholar 

  59. Bubis JA, Schaal AD, Kimtis EA, et al. Subcutaneous administration of alemtuzumab: a single institution experience [abstract no. 5029]. Blood 2005; 106 (11): 5029

    Google Scholar 

  60. Gallamini A, Zaja F, Gargantini L, et al. CHOP chemotherapy plus campath-1H (CHOP-C) as first line treatment in patients with peripheral T-cell lymphoma (PTCL) [abstract no. 3345]. Blood 2005; 106 (11): 935a

    Google Scholar 

  61. King PD, Sadra A, Han A, et al. CD2 signaling in T cells involves tyrosine phosphorylation and activation of the Tec family kinase, EMT/ITK/TSK. Int Immunol 1996; 8 (11): 1707–14

    Article  PubMed  CAS  Google Scholar 

  62. Zhang Z, Zhang M, Ravetch JV, et al. Effective therapy for a murine model of adult T-cell leukemia with the humanized anti-CD2 monoclonal antibody, MEDI-507. Blood 2003; 102 (1): 284–8

    Article  PubMed  CAS  Google Scholar 

  63. Locksley RM, Killeen N, Lenardo MJ. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 2001; 104 (4): 487–501

    Article  PubMed  CAS  Google Scholar 

  64. Younes A, Aggarwall BB. Clinical implications of the tumor necrosis factor family in benign and malignant hematologic disorders. Cancer 2003; 98 (3): 458–67

    Article  PubMed  CAS  Google Scholar 

  65. Cerveny CG, Law C-L, McCormick RS, et al. The anti-CD30 monoclonal antibody SGN-30 inhibits Hodgkin’s disease growth and sensitizes cells to established chemotherapeutics [abstract no. 2639]. American Society of Hematology Annual Meeting abstracts. Blood 2004; 104: 2639

    Google Scholar 

  66. Bartlett NL, Bernstein SH, Leonard JP, et al. Antitumor activity and pharmacokinetics of six weekly doses of SGN-30 (anti-CD30 monoclonal antibody) in patients with refractory or recurrent CD30+ hematologic malignancies [abstract no. 2390]. Blood 2003; 102 (11): 647a

    Google Scholar 

  67. Ansell SM, Byrd JC, Horwitz SM, et al. Phase I/II, open-label, dose-escalating study of MDX-060 administered weekly for 4 weeks in subjects with refractory/relapsed CD30 positive lymphoma [abstract no. 2636]. Blood 2004; 104 (11): 721a

    Google Scholar 

  68. Advani RH, Furman RR, Rosenblatt JD, et al. Phase I study of humanized anti-CD40 immunotherapy with SGN-40 in non-Hodgkin’s lymphoma [abstract no. 1504). Blood 2005; 106 (11): 433a

    Google Scholar 

  69. Lugman M, Tong X, Niu X, et al. CHIR-12.12, an antagonist anti-CD40 antibody, exhibits greater ADCC than rituximab against a variety of malignant B cells: evaluation of FcyRIIIa polymorphism and ADCC response [abstract no. 1472]. Blood 2005; 106 (11): 424a

    Google Scholar 

  70. Younes A, Vose JM, Zelenetz AD, et al. Results of a phase 2 trial of HGS-ETR1 (agonistic human monoclonal antibody to TRAIL receptor 1) in subjects with relapsed/refractory non-Hodgkin’s lymphoma [abstract no. 489]. Blood 2005; 106 (11): 146a

    Google Scholar 

  71. Czuczman MS, Maddipatia S, Knight J, et al. In vitro synergistic anti-tumor activity by targeting TRAIL-R1 and CD20 antigen by combining HGS-ETR1 (agonistic human monoclonal antibody to TRAIL receptor 1) and rituximab monoclonal antibody against non-Hodgkin’s lymphoma cells (NHL) [abstract no. 1475]. Blood 2005; 106 (11): 425a

    Google Scholar 

  72. Hammond PW, Vafa O, Jacinto J, et al. A humanized anti-CD30 monoclonal antibody, XmAb2513, with enhanced in vitro potency against CD30-postive lymphomas mediated by high affinity Fc-receptor binding [abstract no. 1470]. Blood 2005; 106 (11): 424a

    Google Scholar 

  73. Hargreaves P, Al-Shamkhani A. Soluble CD30 binds to CD153 with high affinity and blocks transmembrane signaling by CD30. Eur J Immunol 2002; 32 (1): 163–73

    Article  PubMed  CAS  Google Scholar 

  74. Younes A, Consoli U, Snell V, et al. CD30 ligand in lymphoma patients with CD30+ tumors. J Clin Oncol 1997; 15 (11): 3355–62

    PubMed  CAS  Google Scholar 

  75. Nagata S, Ise T, Onda M, et al. Cell membrane-specific epitopes on CD30: potentially superior targets for immunotherapy. Proc Natl Acad Sci U S A 2005; 102 (22): 7946–51

    Article  PubMed  CAS  Google Scholar 

  76. van Kooten C, Banchereau J. CD40-CD40 ligand. J Leukoc Biol 2000; 67 (1): 2–17

    PubMed  Google Scholar 

  77. Hock BD, McKenzie JL, Patton NW, et al. Circulating levels and clinical significance of soluble CD40 in patients with hematologic malignancies. Cancer 2006; 106 (10): 2148–57

    Article  PubMed  CAS  Google Scholar 

  78. Younes A. The dynamics of life and death of malignant lymphocytes. Curr Opin Oncol 1999; 11 (5): 364–9

    Article  PubMed  CAS  Google Scholar 

  79. Law CL, Gordon KA, Collier J, et al. Preclinical antilymphoma activity of a humanized anti-CD40 monoclonal antibody, SGN-40. Cancer Res 2005; 65 (18): 8331–8

    Article  PubMed  CAS  Google Scholar 

  80. Ashkenazi A. Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nat Rev Cancer 2002; 2 (6): 420–30

    Article  PubMed  CAS  Google Scholar 

  81. Bhardwaj A, Aggarwal BB. Receptor-mediated choreography of life and death. J Clin Immunol 2003; 23 (5): 317–32

    Article  PubMed  CAS  Google Scholar 

  82. Emery JG, McDonnell P, Burke MB, et al. Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL. J Biol Chem 1998; 273 (23): 14363–7

    Article  PubMed  CAS  Google Scholar 

  83. Degli-Esposti M. To die or not to die: the quest of the TRAIL receptors. J Leukoc Biol 1999; 65 (5): 535–42

    PubMed  CAS  Google Scholar 

  84. Pukac L, Kanakaraj P, Humphreys R, et al. HGS-ETR1, a fully human TRAIL-receptor 1 monoclonal antibody, induces cell death in multiple tumour types in vitro and in vivo. Br J Cancer 2005; 92 (8): 1430–41

    Article  PubMed  CAS  Google Scholar 

  85. Snell V, Clodi K, Zhao S, et al. Activity of TNF-related apoptosis-inducing ligand (TRAIL) in haematological malignancies. Br J Haematol 1997; 99(3): 618–24

    Article  PubMed  CAS  Google Scholar 

  86. Georgakis G, Li Y, Humphreys R, et al. Activity of selective fully human agonistic antibodies to the TRAIL death receptors TRAIL-R1 and TRAIL-R2 in primary and cultured lymphoma cells: induction of apoptosis and enhancement of doxorubicinand bortezomib-induced cell death. Br J Haematol 2005; 130 (4): 501–10

    Article  PubMed  CAS  Google Scholar 

  87. Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science 1998; 28 (5381): 1305–8

    Article  Google Scholar 

  88. Herbst RS, Mendolson DS, Ebbinghaus S, et al. A phase I safety and pharmacokinetic (PK) study of recombinant Apo2I7 TRAIL, an apoptosis-inducing protein in patients with advanced cancer [abstract no. 3013]. J Clin Oncol 2006; 24 (18S Pt 1): 124s

    Article  Google Scholar 

  89. Schneider P, Tschopp J. BAFF and the regulation of B cell survival. Immunol Lett 2003; 88 (1): 57–62

    Article  PubMed  CAS  Google Scholar 

  90. Medema JP, Planelles-Carazo L, Hardenberg G, et al. The uncertain glory of APRIL. Cell Death Differ 2003; 10 (10): 1121–5

    Article  PubMed  CAS  Google Scholar 

  91. Mackay F, Schneider P, Rennert P, et al. BAFF AND APRIL: a tutorial on B cell survival. Annu Rev Immunol 2003; 21: 231–64

    Article  PubMed  CAS  Google Scholar 

  92. Kern C, Cornuel JF, Billard C, et al. Involvement of BAFF and APRIL in the resistance to apoptosis of B-CLL through an autocrine pathway. Blood 2004; 103 (2): 679–88

    Article  PubMed  CAS  Google Scholar 

  93. He B, Chadburn A, Jou E, et al. Lymphoma B cells evade apoptosis through the TNF family members BAFF/BLyS and APRIL. J Immunol 2004; 172 (5): 3268–79

    PubMed  CAS  Google Scholar 

  94. Mackay F, Ambrose C. The TNF family members BAFF and APRIL: the growing complexity. Cytokine Growth Factor Rev 2003; 14 (3–4): 311–24

    Article  PubMed  CAS  Google Scholar 

  95. Klein B, Tarte K, Jourdan M, et al. Survival and proliferation factors of normal and malignant plasma cells. Int J Hematol 2003; 78 (2): 106–13

    Article  PubMed  CAS  Google Scholar 

  96. Kolb JP, Kern C, Quiney C, et al. Re-establishment of a normal apoptotic process as a therapeutic approach in B-CLL. Curr Drug Targets Cardiovasc Haematol Disord 2003; 3 (4): 261–86

    Article  PubMed  CAS  Google Scholar 

  97. Novak AJ, Bram RJ, Kay NE, et al. Aberrant expression of Blymphocyte stimulator by B chronic lymphocytic leukemia cells: a mechanism for survival. Blood 2002; 100 (8): 2973–9

    Article  PubMed  CAS  Google Scholar 

  98. Moreaux J, Legouffe E, Jourdan E, et al. BAFF and APRIL protect myeloma cells from apoptosis induced by IL-6 deprivation and dexamethasone. Blood 2004; 103 (8): 3148–57

    Article  PubMed  CAS  Google Scholar 

  99. Novak AJ, Darce JR, Arendt BK, et al. Expression of BCMA, TACI, and BAFF-R in multiple myeloma: a mechanism for growth and survival. Blood 2004; 103 (2): 689–94

    Article  PubMed  CAS  Google Scholar 

  100. Oki Y, Georgakis GV, Migone T, et al. Serum BLyS Level as a prognostic marker in patients with lymphoma [abstract no. 1926]. Blood 2005; 106 (11): 546a

    Google Scholar 

  101. Chiu A, Qiao X, He B, et al. The TNF family members BAFF and APRIL play an important role in Hodgkin lymphoma [abstract no. 22]. Blood 2005; 106 (11): 11a

    Google Scholar 

  102. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med 2003; 9(6): 669–76

    Article  PubMed  CAS  Google Scholar 

  103. Plate K. From angiogenesis to lymphangiogenesis. Nat Med 2001; 7 (2): 151–2

    Article  PubMed  CAS  Google Scholar 

  104. Olofsson B, Pajusola K, Kaipainen A, et al. Vascular endothelial growth factor B, a novel growth factor for endothelial cells. Proc Natl Acad Sci U S A 1996; 93 (6): 2576–81

    Article  PubMed  CAS  Google Scholar 

  105. Ribatti D, Vacca A, Bertossi M, et al. Angiogenesis induced by B-cell non-Hodgkin’s lymphomas: lack of correlation with tumor malignancy and immunologic phenotype. Anticancer Res 1990; 10 (2A): 401–6

    PubMed  CAS  Google Scholar 

  106. Ribatti D, Vacca A, Marzullo A, et al. Angiogenesis and mast cell density with tryptase activity increase simultaneously with pathological progression in B-cell non-Hodgkin’s lymphomas. Int J Cancer 2000; 85 (2): 171–5

    PubMed  CAS  Google Scholar 

  107. Vacca A, Ribatti D, Roncali L, et al. Angiogenesis in B cell lymphoproliferative diseases: biological and clinical studies. Leuk Lymphoma 1995; 20 (1–2): 27–38

    Article  PubMed  CAS  Google Scholar 

  108. Salven P, Orpana A, Teerenhovi L, et al. Simultaneous elevation in the serum concentrations of the angiogenic growth factors VEGF and bFGF is an independent predictor of poor prognosis in non-Hodgkin lymphoma: a single-institution study of 200 patients. Blood 2000; 96 (12): 3712–8

    PubMed  CAS  Google Scholar 

  109. Stopeck AT, Bellamy W, Unger J, et al. Phase II trial of a single agent bevacizumab (Avastin) in patients with relapsed, aggressive non-Hodgkin’s lymphoma (NHL): Southwest Oncology Group Study S0108 [abstract no. 6592]. J Clin Oncol 2005; 23 (16 Suppl.): 583s

    Google Scholar 

  110. Stopeck A, Iannone M, Rimsza L, et al. Expression of VEGF, VEGF receptors, and other angiogenic markers in relapsed aggressive non-Hodgkin’s lymphoma: correlative studies from the SWOG S0108 Trial [abstract no. 2288]. Blood 2004; 104 (11): 629a

    Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this review. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle A. Fanale.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fanale, M.A., Younes, A. Monoclonal Antibodies in the Treatment of Non-Hodgkin’s Lymphoma. Drugs 67, 333–350 (2007). https://doi.org/10.2165/00003495-200767030-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200767030-00002

Keywords

Navigation