Skip to main content
Log in

Practical Treatment Guide for Dose Individualisation in Cancer Chemotherapy

  • Disease Management
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Dosages of anticancer drugs are usually calculated on the basis of a uniform standard, the body surface area (BSA). Although many physiological functions are proportionate to BSA, overall drug clearance is only partially related to this parameter. Consequently, following administration of equivalent drug dosages based on BSA, a wide variability in plasma drug concentrations can be found between patients, as a result of which some patients experience little toxicity while others may show severe toxic symptoms. A clear pharmacokinetic/pharmacodynamic correlation has been demonstrated for some anticancer drugs, and this relationship provides a background against which rational dose optimisation can be implemented for individual patients. The 3 strategies that can be employed for optimising dosage regimens, none based on BSA, are described and criticised.

A priori adaptive dosage determination is based on the relative contribution of identifiable characteristics of patient, drug therapy and disease state that influence plasma drug concentrations; the dosage regimen is based on each patient’s profile with regard to these characteristics. Although this approach is most successful with drugs whose clearance is closely tied to renal function, patient characteristics such age, obesity, serum albumin or hepatic function may be useful. The anticancer drug most closely identified with this approach is carboplatin, although dosage reduction strategies for etoposide, taxanes, anthracyclines, topotecan, oxazaphosphorines, vinca alkaloids or melphalan are advocated for patients with renal or hepatic dysfunction. The importance of pharmacogenetics for fluorouracil and mercaptopurine is also briefly discussed.

The second approach consists of adaptive dosage adjustments during repetitive or continuous administration of a drug. It has been used for several years to administer methotrexate therapy and, more recently, it has been developed more fully and applied to continuous infusion of fluorouracil or etoposide. It was based, after determination of a target plasma concentration or area under the plasma drug concentration-time curve (AUC), on modification of the drug dosage during the cycle of chemotherapy or for the next cycle.

Finally, the third approach of adaptive dosage adjustment with feedback control, based on population pharmacokinetics, with limited sampling strategy, may allow a feedback revision of the dosage following measurement of plasma drug concentration and comparison with the population previously studied. This approach is a theoretical strategy which has not, until now, been used prospectively in clinical oncology.

For drugs such as anticancer agents with a very narrow therapeutic index, every effort should be made to minimise interpatient variability in drug exposure in order to maximise the benefit while keeping the risk of serious adverse effects at an acceptable level. This is particularly important when treatment is being given with curative intent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Egorin MJ. Therapeutic drug monitoring and dose optimisation in oncology. In: Workman P, editor. New approaches in cancer pharmacology: drug design and development. Berlin,: Springer-Verlag, 1992: 75–87

    Chapter  Google Scholar 

  2. Newell DR. Can pharmacokinetic and pharmacodynamic studies improve cancer chemotherapy? [discussion no. 15]. Ann Oncol 1994; 5 Suppl. 4: 9–14

    Google Scholar 

  3. Moore MJ, Erlichman C. Therapeutic drug monitoring in oncology: problems and potential in antineoplastic therapy. Clin Pharmacokinet 1987; 13: 205–7

    Article  PubMed  CAS  Google Scholar 

  4. Egorin MJ, Reyno LM, Canetta RM, et al. Modeling toxicity and response in carboplatin-based combination chemotherapy. Semin Oncol 1994; 5 Suppl. 12: 7–19

    Google Scholar 

  5. Ratain MJ, Schilsky RL, Conley BA, et al. Pharmacodynamics in cancer therapy. J Clin Oncol 1990; 8: 1739–53

    PubMed  CAS  Google Scholar 

  6. Evans WE, Relling MV. Clinical pharmacokinetics-pharmaco-dynamics of anticancer drugs. Clin Pharmacokinet 1989; 16: 327–6

    Article  PubMed  CAS  Google Scholar 

  7. Kobayashi K, Ratain MJ. New perspectives on the toxicity of etoposide. Semin Oncol 1992; 19: 78–83

    PubMed  CAS  Google Scholar 

  8. Kobayashi K, Ratain MJ. Individualizing dosing of cancer chemotherapy. Semin Oncol 1993; 20: 30–42

    PubMed  CAS  Google Scholar 

  9. Masson E, Zamboni WC. Pharmacokinetic optimisation of cancer chemotherapy: effect on outcomes. Clin Pharmacokinet 1997; 32: 324–43

    Article  PubMed  CAS  Google Scholar 

  10. Horwich A, Dearnley DP, Nicholls J. Effectiveness of carboplatin, etoposide and bleomycin combination chemotherapy in good-prognosis metastatic germ cell tumours. J Clin Oncol 1991; 9: 62–9

    PubMed  CAS  Google Scholar 

  11. Jodrell D, Egorin MJ, Canetta RM. Relationships between carboplatin exposure and tumor response and toxicity in patients with ovarian cancer. J Clin Oncol 1992; 10: 520–8

    PubMed  CAS  Google Scholar 

  12. Ayash LJ, Wright JE, Tretyakov O, et al. Cyclophosphamide pharmacokinetics: correlation with cardiac toxicity and tumour response. J Clin Oncol 1992; 10(6): 995–1000

    PubMed  CAS  Google Scholar 

  13. Kantarjian HM, Estey EH, Plunkett W, et al. Phase I/II clinical and pharmacologic studies of high dose cytosine arabinoside in refractory leukemia. Am J Med 1986; 81: 387–94

    Article  PubMed  CAS  Google Scholar 

  14. Desoize B, Marechal F, Cattan A. Clinical pharmacokinetics of etoposide during 120 hours continuous infusion in solid tumours. Br J Cancer 1990; 62: 840–1

    Article  PubMed  CAS  Google Scholar 

  15. Milano G, Etienne MC, Renee N, et al. Relationship between fluorouracil systemic exposure and tumor response and patient survival. J Clin Oncol 1994; 12: 1291–5

    PubMed  CAS  Google Scholar 

  16. Lennard L, Lilleyman JS. Variable mercaptopurine metabolism and treatment outcome in childhood lymphoblastic leukemia. J Clin Oncol 1989; 7: 1816–23

    PubMed  CAS  Google Scholar 

  17. Lilleyman JS, Lennard L. Mercaptopurine metabolism and treatment outcome in childood lymphoblastic leukemia. Lancet 1994; 343(8907): 1188–90

    Article  PubMed  CAS  Google Scholar 

  18. Evans WE, Crom WR, Abromowitch M, et al. Clinical pharmacodynamics of high-dose methotrexate in acute lymphocytic leukemia: identification of a relation between concentration and effect. N Engl J Med 1988; 314: 471–77

    Article  Google Scholar 

  19. Masson E, Relling MV, Synold TW, et al. Accumulation of methtrexate polyglutamates in lymphoblasts is a determinant of antileukemic effects in vivo. J Clin Invest 1996; 97: 73–80

    Article  PubMed  CAS  Google Scholar 

  20. Graf N, Winkler K, Betlemovic M, et al. Methotrexate pharmacokinetics and prognosis in osteosarcoma. J Clin Oncol 1994; 12: 1443–51

    PubMed  CAS  Google Scholar 

  21. Rodman JH, Abromowitch M, Sinkule JA, et al. Clinical pharmacodynamics of continuous infusion teniposide: systemic exposure as a determinant of response in a phase I trial. J Clin Oncol 1987; 5: 1007–4

    PubMed  CAS  Google Scholar 

  22. Crom WR, Glynn-Barnhart AM, Rodman JH, et al. Pharmacokinetics of anticancer drugs in children. Clin Pharmacokinet 1987; 12: 168–213

    Article  PubMed  CAS  Google Scholar 

  23. Evans WE. Clinical pharmacodynamics of anticancer drugs: a basis for extending the concept of dose-intensity. Blut 1988; 56: 241–8

    Article  PubMed  CAS  Google Scholar 

  24. Evans WE, Petros WP, Relling MV, et al. Clinical pharmacology of cancer chemotherapy in children. Pediatr Clin North Am 1989; 36: 1199–230

    PubMed  CAS  Google Scholar 

  25. Petros WP, Evans WE. Pharmacokinetics and pharmacodynamics of anticancer agents: contributions to the therapy of childhood cancer. Pharmacotherapy 1990; 10: 313–25

    PubMed  CAS  Google Scholar 

  26. Evans WE, Rodman JH, Relling MV, et al. Concept of maximum tolerated systemic exposure and its application to phase I-II studies of anticancer drugs. Med Pediatr Oncol 1991; 19: 153–9

    Article  PubMed  CAS  Google Scholar 

  27. McLeod HI, Evans WE. Pediatric pharmacokinetics and therapeutic drug monitoring. Pediatr Rev 1992; 13: 413–21

    PubMed  CAS  Google Scholar 

  28. Evans WE. Alternative approaches for phase I studies of anti-cancer drugs: a role for therapeutic drug monitoring. Ther Drug Monit 1993; 15: 492–7

    Article  PubMed  CAS  Google Scholar 

  29. Crom WR. Pharmacokinetics in the child. Environ Health Persp 1994; 11: 111–7

    Article  Google Scholar 

  30. Evans WE, Relling MV, Rodman JH, et al. Conventional compared with individualized chemotherapy for childhood acute lymphoblastic leukemia. N Engl J Med 1998; 338: 499–505

    Article  PubMed  CAS  Google Scholar 

  31. Egorin MJ, Van Echo DA, Tipping SJ, et al. Pharmacokinetics and dosage reduction of cis-diammine(l,l-cyclobutanedi-carboxylato) platinum in patients with impaired renal function. Cancer Res 1984; 44: 5432–8

    PubMed  CAS  Google Scholar 

  32. Ratain MJ, Vogelzang NJ. Phase I and pharmacological study of vinblastine by prolonged continuous infusion. Cancer Res 1986; 46: 4827–30

    PubMed  CAS  Google Scholar 

  33. Belani CP, Egorin MJ, Abrams JS, et al. A novel pharmaco-dynamically based approach to dose optimization of carbo-platin when used in combination with etoposide. J Clin Oncol 1989; 7: 1896–902

    PubMed  CAS  Google Scholar 

  34. Newell DR, Eeles RA, Gumbrell LA, et al. Carboplatin and etoposide pharmacokinetics in patients with testicular teratoma. Cancer Chemother Pharmacol 1989; 23: 367–72

    Article  PubMed  CAS  Google Scholar 

  35. Tranchand B, Ploin YD, Minuit MP, et al. High-dose melphalan dosage adjustment: possibility of using a test-dose. Cancer Chemother Pharmacol 1989; 23: 95–100

    Article  PubMed  CAS  Google Scholar 

  36. Ratain MJ, Schilsky RL, Choi KE, et al. Adaptive control of etoposide administration: impact of interpatient pharmaco-dynamic variability. Clin Pharmacol Ther 1989; 45: 226–33

    Article  PubMed  CAS  Google Scholar 

  37. Ratain MJ. Dose reduction of etoposide in jaundiced patients. J Clin Oncol 1990; 8: 2088–9

    PubMed  CAS  Google Scholar 

  38. Sorensen BT, Stromgren A, Jakobsen P, et al. Dose-toxicity relationship of carboplatin in combination with cyclophos-phamide in ovarian cancer patients. Cancer Chemother Pharmacol 1991; 28: 397–401

    Article  PubMed  CAS  Google Scholar 

  39. O’Dwyer P, LaCreta FP, Engstrom PF, et al. Phase I/pharmacokinetic reevaluation of ThioTEPA. Cancer Res 1991; 51: 3171–6

    PubMed  Google Scholar 

  40. Jakobsen P, Bastolt L, Dalmark M, et al. Feasibility of myelotoxicity prediction through single blood sample measurement. Cancer Chemother Pharmacol 1991; 28: 465–8

    Article  PubMed  CAS  Google Scholar 

  41. Stewart CF, Arbuck SG, Fleming RA, et al. Relation of systemic exposure to unbound etoposide and hematologic toxicity. Clin Pharmacol Ther 1991; 50: 385–93

    Article  PubMed  CAS  Google Scholar 

  42. Evans WE, Rodman JH, Relling MV, et al. Differences in teniposide disposition and pharmacodynamics in patients with newly diagnosed and relapsed acute lumphocytic leukemia. J Pharmacol Exp Ther 1992; 260: 71–7

    PubMed  CAS  Google Scholar 

  43. Ploin DY, Tranchand B, Guastalla JP, et al. Pharmacokinetically guided dosing for intravenous melphalan: a pilot study in patients with advanced ovarian adenocarcinoma. Eur J Cancer 1992; 28A: 1311–5

    Article  PubMed  CAS  Google Scholar 

  44. Miller AA, Tolley EA, Niell HB, et al. Pharmacodynamics of three daily infusions of etoposide in patients with extensivestage small-cell lung cancer. Cancer Chemother Pharmacol 1992; 31: 161–6

    Article  PubMed  CAS  Google Scholar 

  45. Miller AA, Tolley EA, Niell HB, et al. Pharmacodynamics of prolonged oral etoposide in patients with advanced non-small-cell lung cancer. J Clin Oncol 1993; 11: 1179–88

    PubMed  CAS  Google Scholar 

  46. Pfluger KH, Hahn M, Holz JB, et al. Pharmacokinetics of etoposide: correlation of pharmacokinetic parameters with clinical conditions. Cancer Chemother Pharmacol 1993; 31: 350–6

    Article  PubMed  CAS  Google Scholar 

  47. Piscitelli SC, Rodvold KA, Rushing DA, et al. Pharmacokinetics and pharmacodynamics of doxorubicin in patients with small cell lung cancer. Clin Pharmacol Ther 1993; 53: 555–61

    Article  PubMed  CAS  Google Scholar 

  48. Rowinsky EK. Clinical pharmacology of taxol. J Natl Cancer Inst 1993; 15: 25

    Google Scholar 

  49. Minami H, Shimokata K, Saka H, et al. Phase I clinical and pharmacokinetic study of a 14-day infusion of etoposide in patients with lung cancer. J Clin Oncol 1993; 11: 1602–8

    PubMed  CAS  Google Scholar 

  50. Fety R, Rolland F, Barberi-Heyob M, et al. Clinical impact of pharmacokinetically guided adaptation of 5-fluorouracil: results from a multicentre, randomized trial in patients with locally advanced head and neck carcinomas. Clin Cancer Res 1998; 4: 2039–45

    PubMed  CAS  Google Scholar 

  51. Chatelut E, Chevreau C, Brunner V, et al. A pharmacologically guided phase I study of carboplatin in combination with methotrexate and vinblastine in advanced urothelial cancer. Cancer Chemother Pharmacol 1995; 35: 391–6

    Article  PubMed  CAS  Google Scholar 

  52. Kearns CM, Gianni L, Egorin MJ. Paclitaxel pharmacokinetics and pharmacodynamics. Semin Oncol 1995; 22: 16–23

    PubMed  CAS  Google Scholar 

  53. Huizing MT, Vermorken JB, Rosing H, et al. Pharmacokinetics of paclitaxel and three major metabolites in patients with advanced breast carcinoma refractory to anthracycline therapy treated with a 3-hour paclitaxel infusion: a European Cancer Centre (ECC) trial. Ann Oncol 1995; 6: 699–704

    PubMed  CAS  Google Scholar 

  54. van Wamerdam LJC, Verweij J, Schellens JH, et al. Pharmacokinetics and pharmacodynamics of topotecan administered daily for 5 days every three weeks. Cancer Chemother Pharmacol 1995; 35: 237–45

    Article  Google Scholar 

  55. Millward MJ, Newell DR, Yuen K, et al. Pharmacokinetics and pharmacodynamics of prolonged oral etoposide in women with metastatic breast cancer. Cancer Chemother Pharmacol 1995; 37: 161–7

    Article  PubMed  CAS  Google Scholar 

  56. Chabot GG, Abigerges D, Catimel G, et al. Population pharmacokinetics and pharmacodynamics of irinotecan (CPT-11) and active metabolite SN-38 during phase I trials. Ann Oncol 1995; 6: 141–51

    PubMed  CAS  Google Scholar 

  57. Canal P, Gay C, Dezeuze A, et al. Pharmacokinetics and pharmacodynamics of irinotecan-hydrochloride (CPT-11) during a phase II clinical trial in colorectal cancer. J Clin Oncol 1996; 14: 2688–95

    PubMed  CAS  Google Scholar 

  58. Bruno R, Vivier N, Vergniol JC, et al. A population pharmacokinetic model for docetaxel (taxotere): model building and validation. J Pharmacokinet Biopharm 1996; 24: 153–72

    PubMed  CAS  Google Scholar 

  59. Bruno R, Hill D, Riva A, et al. Population pharmacokinetics/pharmacodynamics of docetaxel in phase JJ studies in patients with cancer. J Clin Oncol 1998; 16: 187–96

    PubMed  CAS  Google Scholar 

  60. Minami H, Ratain MJ, Ando Y, et al. Pharmacodynamic modeling of prolonged administration of etoposide. Cancer Chemother Pharmacol 1996; 39: 61–6

    Article  PubMed  CAS  Google Scholar 

  61. Joel SP, Ellis P, O’Byrne K, et al. Therapeutic monitoring of continuous infusion etoposide in small-cell lung cancer. J Clin Oncol 1996; 14: 1903–12

    PubMed  CAS  Google Scholar 

  62. Joel S. The clinical pharmacology of etoposide: an update. Cancer Treat Rev 1996; 22: 179–221

    Article  PubMed  CAS  Google Scholar 

  63. Huizing MT, Giaccone G, van Warmerdam LJ, et al. Pharmacokinetics of paclitaxel and carboplatin in a dose-escalating and dose-sequencing study in patients with non-small-cell lung cancer: the European Cancer Centre. J Clin Oncol 1997; 15: 317–29

    PubMed  CAS  Google Scholar 

  64. Huizing MT, van Warmerdam LJ, Rosing H, et al. Phase I and pharmacologic study of the combination paclitaxel and carboplatin as first-line chemotherapy in stage III and IV ovarian cancer. J Clin Oncol 1997; 15: 1953–64

    PubMed  CAS  Google Scholar 

  65. Grochow LB, Jones RJ, Brundett RB, et al. Pharmacokinetics of busulfan: correlation with veno-occlusive disease in patients undergoing bone marrow transplantation. Cancer Chemother Pharmacol 1989; 25: 55–61

    Article  PubMed  CAS  Google Scholar 

  66. Reece PA, Stafford I, Russell J, et al. Creatinine clearance as a predictor of ultrafilterable platinum disposition in cancer patients treated with cisplatin: relationship between peak ultra-filterable platinum plasma levels and nephrotoxicity. J Clin Oncol 1987; 5: 304–9

    PubMed  CAS  Google Scholar 

  67. Gregg RW, Molepo JM, Monpetit VJ, et al. Cisplatin neurotoxicity: the relationship between dosage, time, and platinum concentration in neurologic tissues, and morphologic evidence of toxicity. J Clin Oncol 1992; 10: 795–803

    PubMed  CAS  Google Scholar 

  68. Santini J, Milano G, Thyss A, et al. 5-FU therapeutic monitoring with dose adjustment leads to an improved therapeutic index in head and neck cancer. Br J Cancer 1989; 59: 287–90

    Article  PubMed  CAS  Google Scholar 

  69. Gupta E, Lestingi TM, Mick R, et al. Metabolic fate of irinotecan in humans: correlation of glucuronidation with diarrhea. Cancer Res 1994; 54: 3723–5

    PubMed  CAS  Google Scholar 

  70. Desai ZR, Van Den Berg HW, Bridges JM, et al. Can severe vincristine neurotoxicity be prevented? Cancer Chemother Pharmacol 1982; 8: 211–4

    Article  PubMed  CAS  Google Scholar 

  71. Reilly JJ, Workman P. Normalisation of anti-cancer drug dosage using body weight and surface area: is it worthwhile? A review of theoretical and practical considerations. Cancer Chemother Pharmacol 1993; 32: 411–8

    Article  PubMed  CAS  Google Scholar 

  72. Cassidy J. Chemotherapy administration: doses, infusions and choice of schedule. Ann Oncol 1994; 5: 25–9; discussion 29–30

    PubMed  Google Scholar 

  73. Alexander JK, Dennis EW, Smith WG, et al. Blood volume, cardiac output, and distribution of systemic blood flow in extreme obesity. Cardiovasc Res Cent Bull 1962; 1: 39–44

    PubMed  Google Scholar 

  74. Feldschuh J, Enson Y. Prediction of the normal blood volume: relation of blood volume to body habitus. Circulation 1977; 56: 605–12

    Article  PubMed  CAS  Google Scholar 

  75. Du Bois D, Du Bois EF. A formula to estimate the approximate surface area if height and weight be known. Arch Intern Med 1916; 17: 863–71

    Google Scholar 

  76. Gehan EA, George SL. Estimation of human body surface area from height and weight. Cancer Chemother Rep 1970; 54: 225–35

    PubMed  CAS  Google Scholar 

  77. Grochow LB, Baraldi C, Noe D. Is dose normalization to weight or body surface area useful in adults? JNatl Cancer Inst 1990; 82: 323–5

    Article  CAS  Google Scholar 

  78. Reilly JJ, Workman P. Is body composition an important variable in the pharmacokinetics of anticancer drugs? A review and suggestions for further research. Cancer Chemother Pharmacol 1994; 34: 3–13

    Article  PubMed  CAS  Google Scholar 

  79. Baker SD, Grochow LB, Donehower RC. Should anticancer drug doses be adjusted in the obese patient? J Natl Cancer Inst 1995; 87: 333–4

    Article  PubMed  CAS  Google Scholar 

  80. Ratain MJ. Body surface area as a basis for dosing of anticancer agents: science, myth or habit? J Clin Oncol 1998; 16: 2297–8

    PubMed  CAS  Google Scholar 

  81. Dobbs NA, Twelves CJ. What is the effect of adjusting epirubicin doses for body surface area. Br J Cancer 1998; 78: 662–6

    Article  PubMed  CAS  Google Scholar 

  82. Gurney HP, Ackland S, Gebski V, et al. Factors affecting epirubicin pharmacokinetics and toxicity: evidence against using body surface area for dose calculation. J Clin Oncol 1998; 16: 2299–304

    PubMed  CAS  Google Scholar 

  83. Gurney H. Dose calculation of anticancer drugs: areview of the current practice and introduction of an alternative. J Clin Oncol 1996; 14: 2590–611

    PubMed  CAS  Google Scholar 

  84. Kintzel PE, Dorr RT. Anticancer drug renal toxicity and elimination: dosing guidelines for altered renal function. Cancer Treat Rev 1995; 21: 33–64

    Article  PubMed  CAS  Google Scholar 

  85. Koren G, Beatty K, Seto A, et al. The effects of impaired liver function on the elimination of antineoplastic agents. Ann Pharmacother 1992; 26: 363–71

    PubMed  CAS  Google Scholar 

  86. Donelli MG, Zucchetti M, Munzone E, et al. Pharmacokinetics of anticancer agents in patients with impaired liver function. Eur J Cancer 1998; 34: 33–46

    Article  PubMed  CAS  Google Scholar 

  87. Calvert AH, Newell DR, Gumbrell LA, et al. Carboplatin dosage: prospective evaluation of a simple formula based on renal function. J Clin Oncol 1989; 7: 1748–56

    PubMed  CAS  Google Scholar 

  88. Chatelut E, Canal P, Brunner V, et al. Prediction of carboplatin clearance from standard morphological and biological patient characteristics. J Natl Cancer Inst 1995; 87: 573–80

    Article  PubMed  CAS  Google Scholar 

  89. Newell DR, Siddik ZH, Gumbrell LA, et al. Plasma free platinum pharmacokinetics in patients treated with high dose carboplatin. Eur J Cancer Clin Oncol 1987; 23: 1399–405

    Article  PubMed  CAS  Google Scholar 

  90. Shea TC, Flaherty M, Elias A, et al. A phase I clinical and pharmacokinetic study of carboplatin and autologous bone marrow support [published erratum appears in J Clin Oncol 1989 Aug; 7 (8): 1177]. J Clin Oncol 1989; 7: 651–1

    PubMed  CAS  Google Scholar 

  91. Mulder PO, de Vries EG, Uges DR, et al. Pharmacokinetics of carboplatin at a dose of 750 mg m-2 divided over three consecutive days. Br J Cancer 1990; 61: 460–4

    Article  PubMed  CAS  Google Scholar 

  92. Calvert AH, Lind MJ, Ghazal Aswad S, et al. Carboplatin and granulocyte colony-stimulating factor as first-line treatment for epithelial ovarian cancer: a phase I dose-intensity escalation study. Semin Oncol 1994; 21: 1–6

    PubMed  CAS  Google Scholar 

  93. Lind MJ, Ghazal Aswad S, Gumbrell L, et al. Phase I study of pharmacologically based dosing of carboplatin with filgrastim support in women with epithelial ovarian cancer. J Clin Oncol 1996; 14: 800–5

    PubMed  CAS  Google Scholar 

  94. Siddiqui N, Boddy AV, Thomas HD, et al. A clinical and pharmacokinetic study of the combination of carboplatin and paclitaxel for epithelial ovarian cancer. Br J Cancer 1997; 75: 287–94

    Article  PubMed  CAS  Google Scholar 

  95. Egorin MJ, Van Echo DA, Olman EA, et al. Prospective validation of a pharmacologically based dosing scheme for the cis-diamminedichloroplatinum(II) analogue diamminecyclo-butanedicarboxylatoplatinum. Cancer Res 1985; 45: 6502–6

    PubMed  CAS  Google Scholar 

  96. Calvert AH, Boddy A, Bailey NP, et al. Carboplatin in combination with paclitaxel in advanced ovarian cancer: dose determination and pharmacokinetic and pharmacodynamic interactions. Semin Oncol 1995; 22 Suppl. 12: 91–8

    PubMed  CAS  Google Scholar 

  97. van Wamerdam LJC, Rodenhuis S, Ten Bokkel Huinink WW, et al. Evaluation of formulas using the serum creatinine level to calculate the optimal dosage of carboplatin. Cancer Chemother Pharmacol 1996; 37: 266–70

    Article  Google Scholar 

  98. Fujiwara Y, Takahashi T, Yamakido M, et al. Re: prediction of carboplatin clearance from standard morphological and biological patient characteristics [comment on: J Natl Cancer Inst 1995 Apr 19; 87 (8): 573-80]. J Natl Cancer Inst 1997; 89: 260–2

    Article  PubMed  CAS  Google Scholar 

  99. Minami H, Ando Y, Saka H, et al. Re: prediction of carboplatin clearance from standard morphological and biological patient characteristics [comment on: J Natl Cancer Inst 1997 Feb 5; 89 (3): 260-2]. J Natl Cancer Inst 1997; 89: 968–70

    Article  PubMed  CAS  Google Scholar 

  100. Kearns CM, Egorin MJ. Considerations regarding the less-than-expected thrombocytopenia encountered with combination paclitaxel/carboplatin chemotherapy. Semin Oncol 1997; 24 (1 Suppl. 2): S2–91–6

    PubMed  CAS  Google Scholar 

  101. Calvert AH. A review of the pharmacokinetics and pharmaco-dynamics of combination carboplatin/paclitaxel. Semin Oncol 1997; 24 (1 Suppl. 2): S2–85–90

    PubMed  CAS  Google Scholar 

  102. Alberts DS, Garcia DJ. Total platinum dose versus platinum dose intensification in ovarian cancer treatment. Semin Oncol 1994; 21: 11–5

    PubMed  CAS  Google Scholar 

  103. Okamoto H, Nagatomo A, Kunitoh H, et al. The predictive performance of carboplatin clearance by patient characteristics or 24-hour creatinine clearance. Proc Am Assoc Clin Oncol 1996; 15: 174

    Google Scholar 

  104. Hande KR. The importance of drug scheduling in cancer chemotherapy: etoposide as an example. Stem Cells 1996; 14: 18–24

    Article  PubMed  CAS  Google Scholar 

  105. Miller AA, Stewart CF, Tolley EA. Clinical pharmacodynamics of continuous-infusion etoposide. Cancer Chemother Pharmacol 1990; 25: 361–6

    Article  PubMed  CAS  Google Scholar 

  106. Mick R, Ratain MJ. Modeling interpatient pharmacodynamic variability of etoposide. J Natl Cancer Inst 1991; 83: 1560–4

    Article  PubMed  CAS  Google Scholar 

  107. Joel SP, Shah R, Clark PI, et al. Predicting etoposide toxicity: relationship to organ function and protein binding. J Clin Oncol 1996; 14: 257–67

    PubMed  CAS  Google Scholar 

  108. Nguyen L, Chatelut E, Chevreau C, et al. Population pharmacokinetics of total and unbound etoposide. Cancer Chemother Pharmacol 1998; 41: 125–32

    Article  PubMed  CAS  Google Scholar 

  109. Joel SP, Hall M, Gaver RC, et al. Complete recovery of radioactivity after administration of 14C-etoposide in man. Proc Am Assoc Clin Oncol 1995; 14: 168

    Google Scholar 

  110. Stewart CF, Fleming RA, Arbuck SG, et al. Prospective evaluation of a model for predicting etoposide plasma protein binding in cancer patients. Cancer Res 1990; 50: 6854–6

    PubMed  CAS  Google Scholar 

  111. Stewart CF, Arbuck SG, Fleming RA, et al. Changes in the clearance of total and unbound etoposide in patients with liver dysfunction. J Clin Oncol 1990; 8: 1874–9

    PubMed  CAS  Google Scholar 

  112. Stewart CF, Pieper JA, Arbuck SG, et al. Altered protein binding of etoposide in patients with cancer. Clin Pharmacol Ther 1989; 45: 49–55

    Article  PubMed  CAS  Google Scholar 

  113. Arbuck SG, Douglass HO, Crom WR, et al. Etoposide pharmacokinetics in patients with normal and abnormal organ function. J Clin Oncol 1986; 4: 1690–5

    PubMed  CAS  Google Scholar 

  114. Sonnichsen DS, Hurwitz CA, Pratt CB, et al. Saturable pharmacokinetics and paclitaxel pharmacodynamics in children with solid tumors. J Clin Oncol 1994; 12: 532–8

    PubMed  CAS  Google Scholar 

  115. Sonnichsen DS, Relling MV. Clinical pharmacokinetics of paclitaxel. Clin Pharmacokinet 1994; 27: 256–69

    Article  PubMed  CAS  Google Scholar 

  116. Gianni L, Kearns CM, Giani A, et al. Nonlinear pharmacokinetics and metabolism of paclitaxel and its pharmacokinetic/pharmacodynamic relationships in humans. J Clin Oncol 1995; 13: 180–90

    PubMed  CAS  Google Scholar 

  117. Sonnichsen DS, Liu Q, Schuetz EG, et al. Variability in human cytochrome P450 paclitaxel metabolism. J Pharmacol Exp Ther 1995; 275: 566–75

    PubMed  CAS  Google Scholar 

  118. Venook AP, Egorin M, Rosner TD, et al. Phase I and pharmacokinetic trial of paclitaxel in patients with hepatic dysfunction: Cancer and Leukemia Group B 9264. J Clin Oncol 1994; 13: 1811–9

    Google Scholar 

  119. Huizing MT, Rosing H, Vermoken JB. Pharmacology of paclitaxel and its metabolites in patients with altered liver function. Eur J Cancer 1995; 31A Suppl. 5: S192

    Article  Google Scholar 

  120. Nannan Panday VR, Huizing MT, Willemse PHB, et al. Hepatic metabolism of paclitaxel and its impact in patients with altered hepatic function. Semin Oncol 1997; 24 Suppl.: S11–34–8

    Google Scholar 

  121. Bruno R, Sanderink GJ. Pharmacokinetics and metabolism of taxotere (docetaxel). Cancer Surv 1993; 17: 305–13

    PubMed  CAS  Google Scholar 

  122. Launay Iliadis MC, Bruno R, Cosson V, et al. Population pharmacokinetics of docetaxel during phase I studies using nonlinear mixed-effect modeling and nonparametric maximum-likelihood estimation. Cancer Chemother Pharmacol 1995; 37: 47–54

    Article  PubMed  CAS  Google Scholar 

  123. Robert J, Gianni L. Pharmacokinetics and metabolism of anthracyclines. Cancer Surv 1993; 17: 219–52

    PubMed  CAS  Google Scholar 

  124. Robert J. Epirubicin: clinical pharmacology and dose-effect relationship. Drugs 1993; 45 Suppl. 2: 20–30

    Article  PubMed  Google Scholar 

  125. Robert J. Clinical pharmacokinetics of epirubicin. Clin Pharmacokinet 1994; 26: 428–38

    Article  PubMed  CAS  Google Scholar 

  126. Reich SD. Clinical correlation of adriamycin pharmacology. Pharmacol Ther 1978; 5: 304–9

    Google Scholar 

  127. Twelves CJ, Dobbs NA, Gillies HC, et al. Doxorubicin pharmacokinetics: the effect of abnormal liver biochemistry tests. Cancer Chemother Pharmacol 1998; 42: 229–34

    Article  PubMed  CAS  Google Scholar 

  128. Twelves CJ, Dobbs NA, Michael Y, et al. Clinical pharmacokinetics of epirubicin: the importance of liver biochemistry tests. Br J Cancer 1992; 66: 765–9

    Article  PubMed  CAS  Google Scholar 

  129. Verweij J, Lund B, Beijnen J, et al. Phase I and pharmacokinetics study of topotecan, a new topoisomerase I inhibitor. Ann Oncol 1993; 4: 673–8

    PubMed  CAS  Google Scholar 

  130. O’Dwyer P, LaCreta FP, Haas NB, et al. Clinical, pharmacokinetic and biological studies of topotecan. Cancer Chemother Pharmacol 1994; 34: S46–52

    Article  PubMed  Google Scholar 

  131. Dennis MJ, Beijnen JH, Grochow LB, et al. An overview of the clinical pharmacology of topotecan. Semin Oncol 1997; 24

  132. O’Reilly S, Rowinsky EK, Slichenmyer W, et al. Phase I and pharmacologic study of topotecan in patients with impaired renal function. J Clin Oncol 1996; 14: 3062–73

    PubMed  Google Scholar 

  133. O’Reilly S, Rowinsky E, Slichenmyer W, et al. Phase I and pharmacologic studies of topotecan in patients with impaired hepatic function. J Natl Cancer Inst 1996; 88: 817–24

    Article  PubMed  Google Scholar 

  134. Lind MJ, Ardiet C. Pharmacokinetics of alkylating agents. Cancer Surv 1993; 17: 157–88

    PubMed  CAS  Google Scholar 

  135. Kaijser GP, Beijnen JH, Bult A, et al. Ifosfamide metabolism and pharmacokinetics. Anticancer Res 1994; 14: 517–31

    PubMed  CAS  Google Scholar 

  136. Boddy AV, Proctor M, Simmonds D, et al. Pharmacokinetics, metabolism and clinical effect of ifosfamide in breast cancer patients. Eur J Cancer 1995; 31A: 69–76

    Article  PubMed  CAS  Google Scholar 

  137. Busse D, Busch FW, Bohnenstengel F, et al. Dose escalation of cyclophosphamide in patients with breast cancer: consequences for pharmacokinetics and metabolism. J Clin Oncol 1997; 15: 1885–96

    PubMed  CAS  Google Scholar 

  138. Chen TL, Kennedy MJ, Anderson LW, et al. Nonlinear pharmacokinetics of cyclophosphamide and 4-hydroxycyclophos-phamide/aldophosphamide in patients with metastatic breast cancer receiving high-dose chemotherapy followed by autologous bone marrow transplantation. Drug Metab Disp 1997; 25: 544–1

    CAS  Google Scholar 

  139. Wagner T. Ifosfamide clinical pharmacokinetics. Clin Pharmacokinet 1994; 26: 439–56

    Article  PubMed  CAS  Google Scholar 

  140. Rahmani R, Zhou XJ. Pharmacokinetics and metabolism of vinca alkaloids. Cancer Surv 1993; 17: 269–81

    PubMed  CAS  Google Scholar 

  141. Van Den Berg HW, Desai ZR, Wilson R, et al. The pharmacokinetics of vincristine in man: reduced drug clearance associated with raised serum alkaline phosphatase and dose-limited elimination. Cancer Chemother Pharmacol 1982; 8: 215–9

    Article  PubMed  Google Scholar 

  142. Leveque D, Jehl F. Clinical pharmacokinetics of vinorelbine. Clin Pharmacokinet 1996; 31: 184–97

    Article  PubMed  CAS  Google Scholar 

  143. Robieux I, Sorio R, Borsatti E, et al. Pharmacokinetics of vinorelbine in patients with liver metastases. Clin Pharmacol Ther 1996; 59: 32–40

    Article  PubMed  CAS  Google Scholar 

  144. Pinguet F, Martel P, Fabbro M, et al. Pharmacokinetics of high-dose intravenous melphalan in patients undergoing peripheral blood hematopoietic progenitor-cell transplantation. Anticancer Res 1997; 17: 605–11

    PubMed  CAS  Google Scholar 

  145. Osterborg A, Ehrsson H, Eksborg S, et al. Pharmacokinetics of oral melphalan in relation to renal function in multiple myeloma patients. Eur J Cancer Clin Oncol 1989; 25: 899–903

    Article  PubMed  CAS  Google Scholar 

  146. Kergueris MF, Milpied N, Moreau P, et al. Pharmacokinetics of high-dose melphalan in adults: influence of renal function. Anticancer Res 1994; 14: 2379–82

    PubMed  CAS  Google Scholar 

  147. Baker SD, Grochow LB. Pharmacology of cancer chemotherapy in the older person. Clin Geriatr Med 1997; 13: 169–83

    PubMed  CAS  Google Scholar 

  148. Egorin MJ. Cancer pharmacology in the elderly. Semin Oncol 1993; 20: 43–9

    PubMed  CAS  Google Scholar 

  149. Etienne MC, Chatelut E, Pivot X, et al. Co-variables influencing 5-fluorouracil clearance during continuous venous infusion: a NONMEM analysis. Eur J Cancer 1998; 34: 92–7

    Article  PubMed  CAS  Google Scholar 

  150. Gelman RS, Taylor SG. Cyclophosphamide, methotrexate, and 5-fluorouracil chemotherapy in women more than 65 years old with advanced breast cancer: the elimination of age trends in toxicity by using doses based on creatinine clearance. J Clin Oncol 1984; 2: 1404–3

    PubMed  CAS  Google Scholar 

  151. Borkowski JM, Duerr M, Donehower RC, et al. Relation between age and clearance rate of nine investigational anti-cancer drugs from phase I pharmacokinetic data. Cancer Chemother Pharmacol 1994; 33: 493–6

    Article  PubMed  CAS  Google Scholar 

  152. Bonetti A, Franceschi T, Apostoli P, et al. Cisplatin pharmacokinetics in elderly patients. Ther Drug Monit 1994; 16: 477–82

    Article  PubMed  CAS  Google Scholar 

  153. Yamamoto N, Tamura T, Maeda M, et al. The influence of ageing on cisplatin pharmacokinetics in lung cancer patients with normal organ function. Cancer Chemother Pharmacol 1995; 36: 102–6

    Article  PubMed  CAS  Google Scholar 

  154. Sorio R, Robieux I, Galligioni E, et al. Pharmacokinetics and tolerance of vinorelbine in elderly patients with metastatic breast cancer. Eur J Cancer 1997; 33: 301–3

    Article  PubMed  CAS  Google Scholar 

  155. Desoize B, Robert J. Individual dose adaptation of anticancer drugs. Eur J Cancer 1994; 30A(6): 844–51

    Article  PubMed  CAS  Google Scholar 

  156. Gelman RS, Tormey DC, Betensky R, et al. Actual versus ideal weight in the calculation of surface area: effects on dose of 11 chemotherapy agents. Cancer Treat Rep 1987; 71: 907–11

    PubMed  CAS  Google Scholar 

  157. Georgiadis MS, Steinberg SM, Hankins LA, et al. Obesity and therapy-related toxicity in patients treated for small-cell lung cancer. J Natl Cancer Inst 1995; 87: 361–6

    Article  PubMed  CAS  Google Scholar 

  158. Powis G, Reece P, Ahman DL, et al. Effect of body weight on the pharmacokinetics of cyclophosphamide in breast cancer patients. Cancer Chemother Pharmacol 1987; 20: 219–22

    Article  PubMed  CAS  Google Scholar 

  159. Rodvold KA, Rushing DA, Tewksbury DA. Doxorubicin clearance in the obese. J Clin Oncol 1988; 6: 1321–7

    PubMed  CAS  Google Scholar 

  160. Lind MJ, Margison JM, Cerny T, et al. Prolongation of ifosfamide elimination half-life in obese patients due to altered drug distribution. Cancer Chemother Pharmacol 1989; 25: 139–42

    Article  PubMed  CAS  Google Scholar 

  161. Benezet S, Guimbaud R, Chatelut E, et al. How to predict carboplatin clearance from standard morphological and biological characteristics in obese patients. Ann Oncol 1997; 8: 607–9

    Article  PubMed  CAS  Google Scholar 

  162. Houyau P, Gay C, Chatelut E, et al. Severe fluorouracil toxicity in a patient with dihydropyrimidine dehydrogenase deficiency [letter]. J Natl Cancer Inst 1993; 85: 1602–3

    Article  PubMed  CAS  Google Scholar 

  163. Meinsma R, Fernandez-Salguero P, van Kulenberg AB, et al. Human polymorphism in drug metabolism: mutation in the dihydropyrimidine dehydrogenase gene results in exon skipping and thymine uracilurea. DNA Cell Biol 1995; 14: 1–6

    Article  PubMed  CAS  Google Scholar 

  164. Takai S, Fernandez-Salguero P, Kimura S, et al. Assignment of the human dihydropymidine dehydrogenase gene to chromosome region 1p22 by fluorescence in situ hybridisation. Genomics 1994; 24: 613–4

    Article  PubMed  CAS  Google Scholar 

  165. Albin N, Jonhson MR, Shahinian H, et al. Initial characterization of the molecular defect in human dihydropyrimidine dehydrogenase deficiency. Proc Am Assoc Cancer Res 1995; 36: 211

    Google Scholar 

  166. Fleming RA, Milano G, Thyss A, et al. Correlation between dihydropyrimidine dehydrogenase activity in peripheral mononuclear cells ans systemic clearance of fluorouracil in cancer patients. Cancer Res 1992; 52: 2899–902

    PubMed  CAS  Google Scholar 

  167. Etienne MC, Lagrange JL, Dassonville O, et al. Population study of dihydropyrimidine dehydrogenase in cancer patients [see comments]. J Clin Oncol 1994; 12: 2248–53

    PubMed  CAS  Google Scholar 

  168. Milano G, Etienne MC. Potential importance of dihydropyrimidine dehydrogenase (DPD) in cancer chemotherapy. Pharmacogenetics 1994; 4: 301–6

    Article  PubMed  CAS  Google Scholar 

  169. Lennard L. The clinical pharmacology of 6-mercaptopurine. Eur J Clin Pharmacol 1992; 43: 329–9

    Article  PubMed  CAS  Google Scholar 

  170. Lennard L, Lilleyman JS, Van Loon J, et al. Genetic variation in response to 6-mercaptopurine for childhood acute lympho-blastic leukaemia. Lancet 1990; 336: 225–9

    Article  PubMed  CAS  Google Scholar 

  171. Tinel M, Berson A, Pessayre D, et al. Pharmacogenetics of human erythrocyte thiopurine methyltransferase activity in a French population. Br J Clin Pharmacol 1991; 32: 729–34

    PubMed  CAS  Google Scholar 

  172. Lennard L, Van Loon JA, Lilleyman JS, et al. Thiopurine pharmacogenetics in leukemia: correlation of erythrocyte thiopurine methyltransferase activity and 6-thioguanine nucleotide concentrations. Clin Pharmacol Ther 1987; 41: 18–25

    Article  PubMed  CAS  Google Scholar 

  173. Evans WE, Horner M, Chu YQ, et al. Altered mercaptopurine metabolism, toxic effects, and dosage requirement in a thiopurine methyltransferase-deficient child with acute lymphocytic leukemia. J Pediatr 1991; 119: 985–9

    Article  PubMed  CAS  Google Scholar 

  174. Klemetsdal B, Tollefsen E, Loennechen T, et al. Interethnic difference in thiopurine methyltransferase activity. Clin Pharmacol Ther 1992; 51: 24–31

    Article  PubMed  CAS  Google Scholar 

  175. Cresteil T, Monsarrat B, Alvinerie P, et al. Taxol metabolism by human liver microsomes: identification of cytochrome P450 isoenzymes involved in its biotransformation. Cancer Res 1994; 54: 386–92

    PubMed  CAS  Google Scholar 

  176. Royer I, Monsarrat B, Sonnier M, et al. Metabolism of docetaxel by human cytochromes P450: interactions with paclitaxel and other antineoplastic drugs. Cancer Res 1996; 56: 58–65

    PubMed  CAS  Google Scholar 

  177. Haaz MC, Rivory LP, Riche C, et al. The transformation of irinotecan (CPT-11) to its active metabolite SN-38 by human liver microsomes. Differential hydrolysis for the lactone and carboxylate forms. Naunyn Schmiedebergs Arch Pharmacol 1997; 356: 257–62

    CAS  Google Scholar 

  178. Relling MV, Nemec J, Schuetz EG, et al. O-demethylation of epipodophyllotoxin is catalyzed by human cytochrome P450 3A4. Mol Pharmacol 1994; 45: 352–8

    PubMed  CAS  Google Scholar 

  179. Kivisto KT, Kroemer HK, Eichelbaum M. The role of human cytochrome P450 enzymes in the metabolism of anticancer agents: implications for drug interactions. Br J Clin Pharmacol 1995; 40: 523–30

    Article  PubMed  CAS  Google Scholar 

  180. Chang SM, Kuhn JG, Rizzo J, et al. Phase I study of paclitaxel in patients with recurrent malignant glioma: a North American Brain Tumour consortium report. J Clin Oncol 1998; 16: 188–84

    Google Scholar 

  181. Mackenzie PI, Owens IS, Burchell B, et al. The UDP glycosyltransferase gene superfamily: recommended nomenclature update based on evolutionary divergence. Pharmacogenetics 1997; 7: 255–69

    Article  PubMed  CAS  Google Scholar 

  182. Chabot GG. Clinical pharmacokinetics of irinotecan. Clin Pharmacokinet 1997; 33: 245–59

    Article  PubMed  CAS  Google Scholar 

  183. Iyer L, King CD, Whitington PR, et al. Genetic predisposition to the metabolism of irinotecan (CPT-11): Role of uridine diphosphate glucuronosyltransferase isoform 1A1 in the glucuronidation of its active metabolite (SN-38) in human liver microsomes. J Clin Invest 1998; 101: 847–54

    Article  PubMed  CAS  Google Scholar 

  184. Wasserman E, Myara A, Lokiec F, et al. Severe CPT-11 toxicity in patients with Gilbert’s syndrome: two case reports. J Clin Invest 1997; 8: 1049–51

    CAS  Google Scholar 

  185. Ando Y, Saka H, Asai G, et al. UGT1A1 genotypes and glucuronidation of SN-38, the active metabolite of irinotecan. Ann Oncol 1998; 9: 845–7

    Article  PubMed  CAS  Google Scholar 

  186. Favre R, Monjanel S, Alfonsi M, et al. High-dose methotrexate: a clinical and pharmacokinetic evaluation. Cancer Chemother Pharmacol 1982; 9: 156–60

    Article  PubMed  CAS  Google Scholar 

  187. Thyss A, Schneider M, Santini J, et al. Induction chemotherapy with cis-platinum and 5-fluorouracil for squamous cell carcinoma of the head and neck. Br J Cancer 1986; 54: 755–60

    Article  PubMed  CAS  Google Scholar 

  188. Hillcoat BL, McCulloch PB, Figueredo AT, et al. Clinical response and plasma levels of 5-fluorouracil in patients with colonic cancer treated by drug infusion. Br J Cancer 1978; 38: 719–24

    Article  PubMed  CAS  Google Scholar 

  189. Gamelin EC, Danquechin-Dorval EM, Dumesnil YF, et al. Relationship between 5-fluorouracil (5-FU) dose intensity and therapeutic response in patients with advanced colorectal cancer receiving infusional therapy containing 5-FU. Cancer 1996; 77: 441–51

    Article  PubMed  CAS  Google Scholar 

  190. Gamelin EC, Boisdron-Celle M, Delva RG, et al. Long-term weekly treatment of colorectal metastatic cancer with fluorouracil and leucovorin: results of a multicentric prospective trial of fluorouracil dosage optimization by pharmacokinetic monitoring in 152 patients. J Clin Oncol 1998; 16: 1470–8

    PubMed  CAS  Google Scholar 

  191. Clark PI, Slevin ML. The clinical pharmacology of etoposide and teniposide. Clin Pharmacokinet 1987; 12: 223–52

    Article  PubMed  CAS  Google Scholar 

  192. Slevin ML, Clark PL, Joel SP, et al. A randomized trial to evaluate the effect of schedule on the activity of etoposide in small-cell lung cancer. J Clin Oncol 1989; 7: 1333–40

    PubMed  CAS  Google Scholar 

  193. Ratain MJ, Mick R, Schilsky RL, et al. Pharmacologically based dosing of etoposide: a means of safely increasing dose intensity. J Clin Oncol 1991; 9: 1480–6

    PubMed  CAS  Google Scholar 

  194. Kunitoh H, Watanabe K. Phase I/II and pharmacologic study of long-term continuous infusion etoposide combined with cisplatin in patients with advanced non-small-cell lung cancer. J Clin Oncol 1994; 12: 83–9

    PubMed  CAS  Google Scholar 

  195. Miller AA, Herndon JE, Hollis DR, et al. Schedule dependency of 21-day oral versus 3-day intravenous etoposide in combination with intravenous cisplatin in extensive-stage small-cell lung cancer: a randomized phase III study of the Cancer and Leukemia Group B. J Clin Oncol 1995; 13: 1871–9

    PubMed  CAS  Google Scholar 

  196. Joel SP, Clark PI, Heap L, et al. Pharmacological attempts to improve the bioavailability of oral etoposide. Cancer Chemother Pharmacol 1995; 37: 125–33

    Article  PubMed  CAS  Google Scholar 

  197. Sessa C, Zucchetti M, Torri V, et al. Chronic oral etoposide in small-cell lung cancer: clinical and pharmacokinetic results. Ann Oncol 1993; 4: 553–8

    PubMed  CAS  Google Scholar 

  198. Nirenberg A, Mosende C, Mehta BM, et al. High-dose methotrexate with citrovorum factor rescue: predictive value of serum methotrexate concentrations and corrective measures to avert toxicity. Cancer Treat Rep 1977; 61: 779–83

    PubMed  CAS  Google Scholar 

  199. Wolfrom C, Hepp R, Hartmann R, et al. Pharmacokinetic study of methotrexate, folinic acid and their serum metabolites in children treated with high-dose methotrexate and leucovorin rescue. Eur J Clin Pharmacol 1990; 39: 377–83

    Article  PubMed  CAS  Google Scholar 

  200. Pearson AD, Amineddine HA, Yule M, et al. The influence of serum methotrexate concentrations and drug dosage on outcome in childhood acute lymphoblastic leukaemia. Br J Cancer 1991; 64: 169–73

    Article  PubMed  CAS  Google Scholar 

  201. Stoller RG, Hande KR, Jacobs SA, et al. Use of plasma pharmacokinetics to predict and prevent methotrexate toxicity. N Engl J Med 1977; 297: 630–4

    Article  PubMed  CAS  Google Scholar 

  202. Borsi JD, Moe PJ. Systemic clearance of methotrexate in the prognosis of acute lymphoblastic leukemia in children. Cancer 1987; 60: 3020–4

    Article  PubMed  CAS  Google Scholar 

  203. Camilla B, Mahoney D, Leventhal B, et al. Intensive intravenous methotrexate and mercaptopurine treatment of higherrisk non-T, non-B acute lymphocytic leukemia: a pediatric oncology group study. J Clin Oncol 1994; 12: 1383–9

    Google Scholar 

  204. Whitehead VM, Vuchich MJ, Lauer SJ, et al. Accumulation of high levels of methotrexate polyglutamates in lymphoblasts from children with hyperdiploid (greater than 50 chromosomes) B-lineage acute lymphoblastic leukemia: a Pediatrie Oncology Group study. Blood 1992; 80: 1316–23

    PubMed  CAS  Google Scholar 

  205. Chabner BA, Allegra CJ, Curt GA, et al. Polyglutamation of methotrexate: is methotrexate a prodrug? J Clin Invest 1985; 76: 907–12

    Article  PubMed  CAS  Google Scholar 

  206. Grochow LB. Busulfan disposition: the role of therapeutic monitoring in bone marrow transplantation induction regimens. Semin Oncol 1993; 20: 18–25

    PubMed  CAS  Google Scholar 

  207. Schuler U, Schroer S, Kuhnle A, et al. Busulfan pharmacokinetics in bone marrow transplant patients: is drug monitoring warranted? Bone Marrow Transplant 1994; 14: 759–65

    PubMed  CAS  Google Scholar 

  208. Dix SP, Wingard JR, Mullins RE, et al. Association of busulfan area under the curve with veno-occlusive disease following BMT. Bone Marrow Transplant 1996; 17: 225–30

    PubMed  CAS  Google Scholar 

  209. Slattery JT, Clift RA, Buckner CD, et al. Marrow transplantation for chronic myeloid leukemia: the influence of plasma busulfan levels on the outcome of transplantation. Blood 1997; 89: 3055–60

    PubMed  CAS  Google Scholar 

  210. Yeager AM, Wagner Jr JE, Graham ML, et al. Optimization of busulfan dosage in children undergoing bone marrow transplantation: a pharmacokinetic study of dose escalation. Blood 1992; 80: 2425–8

    PubMed  CAS  Google Scholar 

  211. Vassal G, Fischer A, Challine D, et al. Busulfan disposition below the age of three: alteration in children with lysosomal storage disease. Blood 1993; 82: 1030–4

    PubMed  CAS  Google Scholar 

  212. Shaw PJ, Scharping CE, Brian RJ, et al. Busulfan pharmacokinetics using a single daily high-dose regimen in children with acute leukemia. Blood 1994; 84: 2357–62

    PubMed  CAS  Google Scholar 

  213. Hassan M, Ehrsson H, Ljungman P. Aspects concerning busulfan pharmacokinetics and bioavailability. Leukemia Lymphoma 1996; 22: 395–407

    Article  PubMed  CAS  Google Scholar 

  214. Hassan M, Fasth A, Gerritsen B, et al. Busulphan kinetics and limited sampling model in children with leukemia and inherited disorders. Bone Marrow Transplant 1996; 18: 843–50

    PubMed  CAS  Google Scholar 

  215. Vassal G, Koscielny S, Challine D, et al. Busulfan disposition and hepatic veno-occlusive disease in children undergoing bone marrow transplantation. Cancer Chemother Pharmacol 1996; 37: 247–53

    Article  PubMed  CAS  Google Scholar 

  216. Judson IR. Pharmacokinetic modelling —a prelude to therapeutic drug monitoring for all cancer patients? Eur J Cancer 1995; 31A: 1733–5

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Canal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Canal, P., Chatelut, E. & Guichard, S. Practical Treatment Guide for Dose Individualisation in Cancer Chemotherapy. Drugs 56, 1019–1038 (1998). https://doi.org/10.2165/00003495-199856060-00006

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-199856060-00006

Keywords

Navigation