Skip to main content
Log in

Subtype selective interactions of somatostatin and somatostatin analogs with sst1, sst2, and sst5 in BON-1 cells

  • Original Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Somatostatin is a polypeptide hormone acting as an inhibitor of pituitary, pancreatic, and gastrointestinal secretion through specific membrane receptors of which five subtypes have been cloned (sst1–5). Somatostatin analogs are used in the clinic to treat patients with excessive hormone production due to a neuroendocrine tumor. The aim of this study was to investigate the biological activity of three new somatostatin receptor subtype selective analogs (BIM-23926, sst1-selective; BIM-23120, sst2-selective; and BIM-23206, sst5-selective) in the human neuroendocrine tumor cell line, BON-1, which expresses sst1, sst2, and sst5 natively. Somatostatin-14 and octreotide were used as reference substances. Forskolin-induced cAMP accumulation and chromogranin A (CgA) secretion were inhibited by BIM-23120, BIM-23206, and somatostatin-14 in a dose-dependent manner. Cholecystokinin (CCK-8) stimulated activation of mitogen-activated protein (MAP) kinase was inhibited by BIM-23120 and BIM-23206, while BIM-23926 stimulated the activity. Selective BIM analogs showed a more efficient inhibitory effect on cAMP accumulation, CgA secretion, and MAP kinase activity than octreotide in BON-1 cells. This may be explained by the differences in affinity of the ligand to the receptor or by interaction between different sst subtypes. We conclude that increasing knowledge about sst physiology and expression in malignant disease indicates a need for new analogs that can be incorporated into the therapeutic arsenal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Brazeau P, et al. Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science 1973; 179:77–79.

    Article  PubMed  CAS  Google Scholar 

  2. Reichlin S. Somatostatin. N Engl J Med 1983; 309:1495–1501.

    Article  PubMed  CAS  Google Scholar 

  3. Yamada Y, et al. Somatostatin receptors, an expanding gene family: cloning and functional characterization of human SSTR3, a protein coupled to adenylyl cyclase. Mol Endcrinol 1992; 6:2136–2142.

    Article  CAS  Google Scholar 

  4. Yamada Y, et al. Cloning, functional expression and pharmacological characterization of a fourth (hSSTR4) and a fifth (hSSTR5) human somatostatin receptor subtype. Biochem Biophys Res Commun 1993; 195:844–852.

    Article  PubMed  CAS  Google Scholar 

  5. Yamada Y, Post SR, Wang K, Tager HS, Bell GI, Seino S. Cloning and functional characterization of a family of human and mouse somatostatin receptors expressed in brain, gastrointestinal tract, and kidney. Proc Natl Acad Sci USA 1992; 89:251–255.

    Article  PubMed  CAS  Google Scholar 

  6. Florio T, Schettni G. Multiple intracellular effectors modulate physiological functions of the cloned Somatostatin receptors. J Mol Endocrinol 1999; 17:89–100.

    Article  Google Scholar 

  7. Patel YC. Somatostatin and its receptor family. Front Neuroendocrinol 1999; 20:157–198.

    Article  PubMed  CAS  Google Scholar 

  8. Patel YC, Greenwood MT, Warszynska A, Panetta R, Srikant CB. All five cloned human somatostatin receptors (hSSTR1-5) are functionally coupled to adenylyl cyclase. Biochem Biophys Res Commun 1994; 198:605–612.

    Article  PubMed  CAS  Google Scholar 

  9. Patel YC, Molecular pharmacology of somatostatin receptor subtypes. J Endocrinol Invest 1997; 20:348–367.

    PubMed  CAS  Google Scholar 

  10. Heisler S, Reisine T. Forskolin stimulates adenylate cyclase activity, cyclic AMP accumulation, and adrenocorticotropin secretion from mouse anterior pituitary tumor cells. J Neurochem 1984; 42:1659–1666.

    Article  PubMed  CAS  Google Scholar 

  11. Bousquet C, et al. sst2 somatostatin receptor mediates negative regulation of insulin receptor signaling through the tyrosine phosphatase SHP-1. J Biol Chem 1998; 273:7099–7106.

    Article  PubMed  CAS  Google Scholar 

  12. Cobb MH. MAP kinase pathways. Prog Biophys Mol Biol 1999; 71:479–500.

    Article  PubMed  CAS  Google Scholar 

  13. Pearson G, et al. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 2001; 22:153–183.

    Article  PubMed  CAS  Google Scholar 

  14. Florio T, et al. Somatostatin receptor 1 (SSTR1)-mediated inhibition of cell proliferation correlates with the activation of the MAP kinase cascade: role of the phosphotyrosine phosphatase SHP-2. J Physiol Paris 2000; 94:239–250.

    Article  PubMed  CAS  Google Scholar 

  15. Nobels FR, Kwekkeboom DJ, Bouillon R, Lamberts SW. Chromogranin A: its clinical value as marker of neuroendocrine tumours. Eur J Clin Invest 1998; 28:431–440.

    Article  PubMed  CAS  Google Scholar 

  16. Bauer W, et al. SMS 201-995: a very potent and selective octapeptide analogue of somatostatin with prolonged action. Life Sci 1982; 31:1133–1140.

    Article  PubMed  CAS  Google Scholar 

  17. Reubi JC, et al. SST3-selective potent peptidic somatostatin receptor antagonists. Proc Natl Acad Sci USA 2000; 97:13973–13978.

    Article  PubMed  CAS  Google Scholar 

  18. Yang L, et al. Synthesis and biological activities of potent peptidomimetics selective for somatostatin receptor subtype 2. Proc Natl Acad Sci USA 1998; 95:10836–10841.

    Article  PubMed  CAS  Google Scholar 

  19. Reubi JC, Schaer JC, Waser B, Hoeger C, Rivier J. A selective analog for the somatostatin sst1-receptor subtype expressed by human tumors. Eur J Pharmacol 1998; 345:103–110.

    Article  PubMed  CAS  Google Scholar 

  20. Patel YC, Srikant CB. Subtype selectivity of peptide analogs for all five cloned human somatostatin receptors (hsstr 1–5). Endocrinology 1994; 135:2814–2817.

    Article  PubMed  CAS  Google Scholar 

  21. Nunn C, Schoeffter P, Langenegger D, Hoyer D. Functional characterisation of the putative somatostatin sst(2) receptor antagonist CYN 154806. Naunyn-Schmiedebergs Arch Pharmacol 2003; 367:1–9.

    Article  PubMed  CAS  Google Scholar 

  22. Cattaneo MG, Taylor JE, Culler MD, Nisoli E, Vicentini LM. Selective stimulation of somatostatin receptor subtypes: differential effects on Ras/MAP kinase pathway and cell proliferation in human neuroblastoma cells. FEBS Lett 2000; 481:271–276.

    Article  PubMed  CAS  Google Scholar 

  23. Afargan M, et al. Novel long-acting somatostatin analog with endocrine selectivity: potent suppression of growth hormone but not of insulin. Endocrinology 2001; 142:477–486.

    Article  PubMed  CAS  Google Scholar 

  24. Shimon I, et al. Somatostatin receptor subtype specificity in human fetal pituitary cultures. Differential role of SSTR2 and SSTR5 for growth hormone, thyroid-stimulating hormone, and prolactin regulation. J Clin Invest 1997; 99:789–798.

    Article  PubMed  CAS  Google Scholar 

  25. Evers BM, et al. Establishment and characterization of a human carcinoid in nude mice and effect of various agents on tumor growth. Gastroenterology 1991; 101:303–311.

    PubMed  CAS  Google Scholar 

  26. Stridsberg M, Hellman U, Wilander E, Lundqvist G, Hellsing K, Oberg K. Fragments of chromogranin A are present in the urine of patients with carcinoid tumours: development of a specific radioimmunoassay for chromogranin A and its fragments. J Endocrinol 1993; 139:329–337.

    PubMed  CAS  Google Scholar 

  27. Florio T, Yao H, Carey KD, Dillon TJ, Stork PJ. Somatostatin activation of mitogen-activated protein kinase via somatostatin receptor 1 (SSTR1). Mol Endocrinol 1999; 13:24–37.

    Article  PubMed  CAS  Google Scholar 

  28. Florio T, et al. Somatostatin receptor 1 (SSTR1)-mediated inhibition of cell proliferation correlates with the activation of the MAP kinase cascade: role of the phosphotyrosine phosphatase SHP-2. J Physiol Paris 2000; 94:239–250.

    Article  PubMed  CAS  Google Scholar 

  29. Janson ET, Stridsberg M, Gobl A, Westlin JE, Oberg K. Determination of somatostatin receptor subtype 2 in carcinoid tumors by immunohistochemical investigation with somatostatin receptor subtype 2 antibodies. Cancer Res 1998; 58:2375–2378.

    PubMed  CAS  Google Scholar 

  30. Reubi JC, Kappeler A, Waser B, Laissue J, Hipkin RW, Schonbrunn A. Immunohistochemical localization of somatostatin receptors sst2A in human tumors. Am J Pathol 1998; 153:233–245.

    PubMed  CAS  Google Scholar 

  31. Reubi JC, Waser B, Liu Q, Laissue JA, Schonbrunn A. Subcellular distribution of somatostatin sst2A receptors in human tumors of the nervous and neuroendocrine systems: membranous versus intracellular location. J Clin Endocrinol Metab 2000; 85:3882–3891.

    Article  PubMed  CAS  Google Scholar 

  32. Kulaksiz H, et al. Identification of somatostatin receptor subtypes 1, 2A, 3, and 5 in neuroendocrine tumours with subtype specific antibodies. Gut 2002; 50:52–60.

    Article  PubMed  CAS  Google Scholar 

  33. Lamberts SW, Krenning EP, Reubi JC. The role of somatostatin and its analogs in the diagnosis and treatment of tumors. Endocr Rev 1991; 12:450–482.

    Article  PubMed  CAS  Google Scholar 

  34. Schally AV. Oncological applications of somatostatin analogues. Cancer Res 1988; 48:6977–6985.

    PubMed  CAS  Google Scholar 

  35. Strowski MZ. et al. Somatostatin receptor subtype 5 regulates insulin secretion and glucose homeostasis. Mol Endocrinol 2003; 17:93–106.

    Article  PubMed  CAS  Google Scholar 

  36. Buscail L, et al. Inhibition of cell proliferation by the somatostatin analogue RC-160 is mediated by somatostatin receptor subtypes SSTR2 and SSTR5 through different mechanisms. Proc Natl Acad Sci USA 1995; 92:1580–1584.

    Article  PubMed  CAS  Google Scholar 

  37. Cattaneo MG, Scita G, Vicentini LM. Somatostatin inhibits PDGF-stimulated Ras activation in human neuroblastoma cells. FEBS Lett 1999; 459:64–68.

    Article  PubMed  CAS  Google Scholar 

  38. Cordelier P, et al. Characterization of the antiproliferative signal mediated by the somatostatin receptor subtype sst5. Proc Natl Acad Sci USA 1997; 94:9343–9348.

    Article  PubMed  CAS  Google Scholar 

  39. Anthony L, et al. Somatostatin analogue phase I trials in neuroendocrine neoplasms. Acta Oncol 1993; 32:217–223.

    PubMed  CAS  Google Scholar 

  40. Mansky PJ, et al. Treatment of metastatic osteosarcoma with the somatostatin analog OncoLar: significant reduction of insulin-like growth factor-1 serum levels. J Pediatr Hematol Oncol 2002; 24:440–446.

    Article  PubMed  Google Scholar 

  41. Pfeiffer M, et al. Homo- and heterodimerization of somatostatin receptor subtypes. Inactivation of sst(3) receptor function by heterodimerization with sst(2A). J Biol Chem 2001; 276:14027–14036.

    PubMed  CAS  Google Scholar 

  42. Rocheville M, Lange DC, Kumar U, Patel SC, Patel RC, Patel YC. Receptors for dopamine and somatostatin: formation of hetero-oligomers with enhanced functional activity. Science 2000; 288:154–157.

    Article  PubMed  CAS  Google Scholar 

  43. Rocheville M, Lange DC, Kumar U, Sasi R, Patel RC, Patel YC. Subtypes of the somatostatin receptor assemble as functional homo-and heterodimers. J Biol Chem 2000; 275:7862–7869.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva T. Janson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ludvigsen, E., Stridsberg, M., Taylor, J.E. et al. Subtype selective interactions of somatostatin and somatostatin analogs with sst1, sst2, and sst5 in BON-1 cells. Med Oncol 21, 285–295 (2004). https://doi.org/10.1385/MO:21:3:285

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/MO:21:3:285

Key Words

Navigation