Skip to main content
Log in

Changes in regional energy metabolism after closed head injury in the rat

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

We examined in the present investigation regional ATP, glucose, and lactate content in the cortical and subcortical structures, in a rat model of closed head injury (CHI). In serial tissue sections bioluminescence imaging of ATP, glucose, and lactate was performed at 4 h, 12 h and 24 h (n=4/5 per time point with) after the induction of CHI or sham surgery. Bioluminescence images were analyzed by computer-assisted densitometry, at the lesion site, in remote cortical areas, and in the subcortical structures (thalamus and caudate nucleus). ATP content was significantly decreased at the lesion site after 4 h and in the remote cortex at 12 h post-injury. At 12 h, the ATP content reached baseline levels on the ipsilateral side and at 24 h also at remote lateral parietal sites. In the contralateral cortex, ATP increased transiently above the baseline at 12 h. No significant changes in ATP were found in the thalamus and caudate nucleus. Cortical glucose and lactate contents could not be discerned over time.

Following CHI there is an acute and progressive, yet transient, ischemic cortical profile, which is not reflected in subcortical areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Armstead W. M. (1999) Age-dependent impairment of K(ATP) channel function following brain injury. J. Neurotrauma 16(5), 391–402.

    PubMed  CAS  Google Scholar 

  • Assaf Y., Holokovsky A., Bermann E., Shapira Y., Shohami E., and Cohen Y. (1999) Diffusion and perfusion MRI following closed head injury in rats. J. Neurotrauma 16, 1165–1176.

    PubMed  CAS  Google Scholar 

  • Azbill R., Mu X., Bruce-Keller A. J., Mattson M. P., and Springer J. (1997) Impaired mitochondrial function, oxidative stress and altered antioxidant enzyme activities following traumatic spinal cord injury. Brain Res. 765, 283–290.

    Article  PubMed  CAS  Google Scholar 

  • Barone F. C., Ohlstein E. H., Hunter A. J., et al. (2000) Selective antagonism of ETA receptors improves outcome in both head trauma and focal stroke. J. Cardiovasc. Pharmacol. 36, 357–361.

    Google Scholar 

  • Beit-Yannai E., Kohen R., Horowitz M., Trembovler V., and Shohami E. (1997) Changes in biological reducing activity in rat brain following closed head injury: a cyclic voltammetry study in normal and acclimated rats. J. Cereb. Blood Flow Metabol. 17, 273–279.

    Article  CAS  Google Scholar 

  • Bell M. J., Kochanek P. M., Doughty L. A., Carcillo J. A., Adelson P. D., Clark R. S., et al. (1997) Interleukin-6 and interleukin-10 in cerebrospinal fluid after severe traumatic brain injury in children. J. Neurotrauma 14, 451–457.

    PubMed  CAS  Google Scholar 

  • Bramlett H. M., Kraydieh S., Green E. J., and Dietrich W. D. (1997) Temporal and regional patterns of axonal damage following traumatic brain injury: a beta-amyloid precursor protein immunocytochemical study in rats. J. Neuropathol. Exp. Neurol. 56, 1132–1141.

    PubMed  CAS  Google Scholar 

  • Fan L., Young P. R., Barone F. C., Feuerstein G. Z., Smith D. H., and McIntosh T. K. (1996) Experimental brain injury induces differential expression of tumor necrosis factor-mRNA in the CNS. Mol. Brain Res. 36, 287–291.

    Article  PubMed  CAS  Google Scholar 

  • Holmin S., Schalling M., Hojeberg B., Nordqvist A. C., Skeftruna A. K., and Mathiesen T. (1997) Delayed cytokine expression in rat brain following experimental contusion. J. Neurosurg. 86, 493–504.

    Article  PubMed  CAS  Google Scholar 

  • Kossmann T., Hans V. H. J., Imhof H. G., Stocker R., Grob P., Trentz O., and Morganti-Kossmann M. C. (1994) Intrathecal and serum interleukin-6 and the acute phase response in patients with severe traumatic brain injuries. Shock 4, 311–317.

    Google Scholar 

  • Krishnappa I. K., Contant C. F., and Robertson C. S. (1999) Regional changes in cerebral extracellular glucose and lactate concentrations following severe cortical impact injury and secondary ischemia in rats. J. Neurotrauma 16, 213–224.

    PubMed  CAS  Google Scholar 

  • Laurer H. L., Lenzlinger P. M., and McIntosh T. K. (2000) Models of traumatic brain injury. Eur. J. Trauma 26, 95–110.

    Article  Google Scholar 

  • Lee S. M., Wong M. D., Samii A., and Hovda D. A. (1999) Evidence for energy failure following irreversible traumatic brain injury. Ann. NY Acad. Sci. 893, 337–340.

    Article  PubMed  CAS  Google Scholar 

  • Marion D. W., Darby J., and Jonas H. (1991) Acute general regional cerebral blood flow changes caused by severe head injuries. J. Neurosurg. 74, 407–414.

    PubMed  CAS  Google Scholar 

  • Mautes A. E. M., Schröck H., Nacimiento A. C., and Paschen W. (2000) Regional spinal cord blood flow and energy metabolism in rats after laminectomy and acute compression injury. Eur. J. Trauma 26, 122–130.

    Article  Google Scholar 

  • Meier-Ruge W. A., and Bertoni-Freddari C. (1997) Pathogenesis of decreased glucose turnover and oxidative phosphorylation in ischemic and trauma-induced dementia of the Alzheimer type. Ann. NY Acad. Sci. 826, 229–241.

    Article  PubMed  CAS  Google Scholar 

  • Murakami N., Yamaki T., Iwamoto Y., Sakakibara T., Kobori N., Fushiki S., and Ueda S. (1998) Experimental brain injury induces expression of amyloid precursor protein, which may be related to neuronal loss in the hippocampus. J. Neurotrauma 15, 993–1003.

    PubMed  CAS  Google Scholar 

  • Ott L., McClain C. J., Gillespie M., and Young B. (1994) Cytokines and metabolic dysfunction after severe head injury. J. Neurotrauma 11, 447–472.

    Article  PubMed  CAS  Google Scholar 

  • Pierce J. E., Trojanowski J. Q., Graham D. I., Smith D. H., and McIntosh T. K. (1996) Immunohistochemical characterization of alterations in the distribution of amyloid precursor proteins and beta-amyloid peptide after experimental brain injury in the rat. J. Neurosci. 16, 1083–1090.

    PubMed  CAS  Google Scholar 

  • Shapira Y., Shohami E., Sidi A., Soffer D., Freeman S., and Cotev S. (1988) Experimental closed head injury in rats: mechanical, pathophysiologic, and neurologic properties. Crit. Care Med. 16, 258–265.

    Article  PubMed  CAS  Google Scholar 

  • Shohami E., Novikov M., Bass R., Yamin A., and Gallily R. (1994) Closed head injury triggers early production of TNF and IL-6 by brain tissue. J. Cereb. Blood Flow Metabol. 14, 615–619.

    CAS  Google Scholar 

  • Shohami E., Bass R., Wallach D., Yamin A., and Gallily R. (1996) Inhibition of Tumor Necrosis factor activity in rat brain is associated with cerebroprotection after closed head injury. J. Cereb. Blood Flow Metabol. 16, 378–384.

    Article  CAS  Google Scholar 

  • Shohami E., Gallily R., Mechoulam R., Bass R., and Ben-Hur T. (1997) Cytokine production in the brain following closed head injury: Dexanabinol (HU-211) is a novel TNF inhibitor and an effective neuroprotectant. J. Neuroimmunol. 72, 169–177.

    Article  PubMed  CAS  Google Scholar 

  • Sullivan P. G., Keller J. N., Mattson M. P., and Scheff S. W. (1998) Traumatic brain injury alters synaptic homeostasis: implications for impaired mitochondrial and transport function. J. Neurotrauma 15, 789–798.

    PubMed  CAS  Google Scholar 

  • Vagnozzi R., Marmarou A., Tavazzi B., Signoretti S., Di Pierro D., del Bolgia F., et al. (1999) Changes of energy metabolism and lipid peroxidation in rats leading to mitochondrial dysfunction after diffuse brain injury. J. Neurotrauma 16, 903–913.

    Article  PubMed  CAS  Google Scholar 

  • Woodroofe M. N., Sarna G. S., Wadhwa M., Hayes G. M., Loughlin A. J., Tiner A., and Cuzner M. L. (1991) Detection of interleukin-1 and interleukin-6 in adult rat brain following mechanical injury, by in vivo microdialysis: evidence of a role for microglia in cytokine production. J. Neuroimmunol. 33, 227–236.

    Article  PubMed  CAS  Google Scholar 

  • Yoshino A., Hovda D. A., Kawamata T., Katayama Y., and Becker D. P. (1991) Dynamic changes in local cerebral glucose utilization following cerebral conclusion in rats: evidence of a hyper- and subsequent hypometabolic state. Brain Res. 561, 106–119.

    Article  PubMed  CAS  Google Scholar 

  • Yu N., Maciejewski-Lenoir D., Bloom F. E., and Magistretti P. J. (1995) Tumor necrosis factor-alpha and interleukin-1 alpha enhance glucose utilization by astrocytes: involvement of phospholipase A2. Mol. Pharmacol. 48, 550–558.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mautes, A.E.M., Thome, D., Steudel, WI. et al. Changes in regional energy metabolism after closed head injury in the rat. J Mol Neurosci 16, 33–39 (2001). https://doi.org/10.1385/JMN:16:1:33

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:16:1:33

Index Entries

Navigation