Skip to main content
Log in

Imaging beta cell development in real-time using pancreatic explants from mice with green fluorescent protein-labeled pancreatic beta cells

  • Reports
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

We present a convenient method for monitoring pancreatic beta cell development in real-time, through in vitro culture of embryonic pancreatic explants from transgenic mice with a genetic tag for insulin-producing beta cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Gittes, G. K.; Galante, P. E.; Hanahan, D.; Rutter, W. J.; Debas, H. T. Lineage-specific morphogenesis in the developing pancreas: role of mesenchymal factors. Development 122:439–447; 1996.

    PubMed  CAS  Google Scholar 

  • Hara, M.; Wang, X.; Kawamura, T.; Bindokas, V. P.; Dizon, R. F.; Alcoser, S. Y.; Magnuson, M. A.; Bell, G. I. Transgenic mice with green fluorescent protein-labeled pancreatic beta-cells. Am. J. Physiol. Endocrinol. Metab. 284:E177-E183; 2003.

    PubMed  CAS  Google Scholar 

  • Kim, S. K.; MacDonald, R. J. Signaling and transcriptional control of pancreatic organogenesis. Curr. Opin. Genet. Dev. 12:540–547; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Lacy, P. E.; Kostianovsky, M. Method for the isolation of intact islets of Langerhans from the rat pancreas. Diabetes 16:35–39; 1967.

    PubMed  CAS  Google Scholar 

  • Lammert, E.; Cleaver, O.; Melton, D. Induction of pancreatic differentiation by vessels from blood vessels. Science 294:564–567; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Mellitzer, G.; Martin, M.; Sidhoum-Jenny, M.; Orvain, C.; Barths, J.; Seymour, P. A.; Sander, M.; Gradwohl, G. Pancreatic islet progenitor cells in neurogenin 3-yellow fluorescent protein knock-add-on mice. Mol. Endocrinol. 18:2765–2776; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Meneghel-Rozzo, T.; Rozzo, A.; Poppi, L.; Rupnik, M. In vivo and in vitro development of mouse pancreatic beta-cells in organotypic slices. Cell Tissue Res. 316:295–303; 2004.

    Article  PubMed  Google Scholar 

  • Murtaugh, L. G.; Melton, D. A. Genes, signals, and lineages in pancreas development. Annu. Rev. Cell Dev. Biol. 19:71–89; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Ogata, T.; Li, L.; Yamada, S.; Yamamoto, Y.; Tanaka, Y.; Takai, I.; Umezawa, K.; Kojima, I. Promotion of beta-cell differentiation by conophylline in fetal and neonatal rat pancreas. Diabetes 53:2596–2602; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Prasadan, K.; Daume, E.; Preuett, B., et al. Glucagon is required for early insulin-positive differentiation in the developing mouse pancreas. Diabetes 51:3229–3236; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Sanvito, F.; Herrera, P. L.; Huarte, J.; Nichols, A.; Montesano, R.; Orci, L.; Vassalli, J. D. TGF-beta 1 influences the relative development of the exocrine and endocrine pancreas in vitro. Development 120: 3451–3462; 1994.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David W. Piston.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gunawardana, S.C., Hara, M., Bell, G.I. et al. Imaging beta cell development in real-time using pancreatic explants from mice with green fluorescent protein-labeled pancreatic beta cells. In Vitro Cell.Dev.Biol.-Animal 41, 7–11 (2005). https://doi.org/10.1290/0412080.1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1290/0412080.1

Key words

Navigation