Chemical and Pharmaceutical Bulletin
Online ISSN : 1347-5223
Print ISSN : 0009-2363
ISSN-L : 0009-2363
Regular Articles
Synthesis and Characterization of Radioiodinated MD-230254: A New Ligand for Potential Imaging of Monoamine Oxidase B Activity by Single Photon Emission Computed Tomography
Masahiko HirataShinya KagawaMitsuyoshi YoshimotoYoshiro Ohmomo
Author information
JOURNAL FREE ACCESS

2002 Volume 50 Issue 5 Pages 609-614

Details
Abstract

A series of iodinated analogues of MD-230254 was synthesized and evaluated for inhibitory potency and selectivity toward monoamine oxidase B (MAO-B). Among them, 5-[4-(2-iodobenzyloxy)phenyl]-3-(cyanoethyl)-1, 3, 4-oxadiazole-2(3H)one (2-IBPO) was found to have high inhibitory potency and selectivity toward MAO-B (IC50=2.0 nM, MAO-A/MAO-B >50000). Analysis of the inhibition kinetics indicated that 2-IBPO acts in a two-step mechanism as a competitive, slow, and tight-binding inhibitor of MAO-B with a Ki value of 2.4 nM and an overall Ki* value at an equilibrium of 3.8 nM. The new radioligand for MAO-B, [125I]2-IBPO was conveniently synthesized from a tributylstannyl precursor by an iododestannylation reaction using sodium [125I]iodide and hydrogen peroxide with high radiochemical yield. The in vivo tissue distribution studies of [125I]2-IBPO demonstrated its high initial uptake and prolonged retention in the brain. A selective interaction of [125I]2-IBPO with MAO-B was confirmed by the pretreatment experiment with well known MAO specific inhibitors, l-deprenyl, Ro-16-6491, clorgyline, and Ro-41-1049. These very desirable characteristics of [125I]2-IBPO suggested that a 123I-labeled counterpart, [123I]2-IBPO, would have great potential in in vivo studies of MAO-B in the human brain with single photon emission computed tomography (SPECT).

Content from these authors
© 2002 The Pharmaceutical Society of Japan
Previous article Next article
feedback
Top