Skip to main content

Advertisement

Log in

Ki 67 is an Independent Predictive Biomarker of Cancer Specific and Local Recurrence-Free Survival After Lung Tumor Ablation

  • Translational Research and Biomarkers
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

The objective of this work was to evaluate the feasibility of histopathological analysis of tissue extracted on multitined electrodes and assess whether tissue characteristics can be used as biomarkers of oncologic outcomes after lung tumor radiofrequency (RF) ablation.

Methods

Treatment-related data regarding RF ablation of lung malignancies at our institution was collected using a Health Insurance Portability and Accountability Act-compliant ablation database. Institutional review board waiver was obtained for this study. Immunohistochemical analysis of tissue extracted from the electrodes after lung tumor RF ablation was performed for proliferation (Ki-67) and apoptosis (caspase-3). Patient, tumor demographics, and ablation parameters were recorded. Local tumor progression-free survival (LPFS), disease-specific survival (DSS), and overall survival (OS) were assessed using Kaplan–Meier methodology. Multivariate analysis determined factors affecting these oncological outcomes.

Results

A total of 47 lung tumors in 42 patients were ablated; 30 specimens were classified as coagulation necrosis (CN) and 17 as Ki-67-positive (+) tumor cells (viable). Tumor sizes were similar in the CN and Ki-67+ groups (P = 0.32). Median LPFS was 10 versus 16 months for Ki-67+ and CN groups, and 1-year LPFS was 34 and 75 %, respectively (P = 0.003). Median OS was 20 and 46 months (P = 0.12), and median DSS was 20 and 68 months (P = 0.01) for the Ki-67 + and CN groups, respectively. Identification of Ki-67+ tumor cells more than tripled the risk of death from cancer [hazard ratio (HR) = 3.65; 95 % confidence interval (95 % CI), 1.34–9.95; P = 0.01] and tripled the risk of local tumor progression (LTP) (HR = 3.01; 95 % CI, 1.39–6.49; P = 0.005).

Conclusions

Ki-67+ tumor cells on the electrode after pulmonary tumor RF ablation is an independent predictor of LTP, shorter LPFS, and DSS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lencioni R, Crocetti L, Cioni R, Suh R, Glenn D, Regge D, et al. Response to radiofrequency ablation of pulmonary tumours: a prospective, intention-to-treat, multicentre clinical trial (the RAPTURE study). Lancet Oncol. 2008;9:621–8.

    Article  PubMed  Google Scholar 

  2. Pua BB, Solomon SB. Radiofrequency ablation of primary and metastatic lung cancers. Semin Ultrasound CT MR. 2009;30:113–24.

    Article  PubMed  Google Scholar 

  3. Crocetti L, Lencioni R. Radiofrequency ablation of pulmonary tumors. Eur J Radiol. 2010;75:23–7.

    Article  PubMed  Google Scholar 

  4. Thanos L, Mylona S, Ptohis N, Tsiouris S, Sotiropoulou E, Pomoni A, et al. Percutaneous radiofrequency thermal ablation in the management of lung tumors: presentation of clinical experience on a series of 35 patients. Diagn Interv Radiol. 2009;15:290–6.

    PubMed  Google Scholar 

  5. Simon CJ, Dupuy DE, DiPetrillo TA, Safran HP, Grieco CA, Ng T, et al. Pulmonary radiofrequency ablation: long-term safety and efficacy in 153 patients. Radiology. 2007;243:268–75.

    Article  PubMed  Google Scholar 

  6. Hess A, Palussiere J, Goyers JF, Guth A, Auperin A, de Baere T. Pulmonary radiofrequency ablation in patients with a single lung: feasibility, efficacy, and tolerance. Radiology. 2011;258:635–42.

    Article  PubMed  Google Scholar 

  7. Dupuy DE, Zagoria RJ, Akerley W, Mayo-Smith WW, Kavanagh PV, Safran H. Percutaneous radiofrequency ablation of malignancies in the lung. AJR Am J Roentgenol. 2000;174:57–9.

    Article  PubMed  CAS  Google Scholar 

  8. Yasui K, Kanazawa S, Sano Y, Fujiwara T, Kagawa S, Mimura H, et al. Thoracic tumors treated with CT-guided radiofrequency ablation: initial experience. Radiology. 2004;231:850–7.

    Article  PubMed  Google Scholar 

  9. Akeboshi M, Yamakado K, Nakatsuka A, Hataji O, Taguchi O, Takao M, et al. Percutaneous radiofrequency ablation of lung neoplasms: initial therapeutic response. J Vasc Interv Radiol. 2004;15:463–70.

    Article  PubMed  Google Scholar 

  10. Sonntag PD, Hinshaw JL, Lubner MG, Brace CL, Lee FT, Jr. Thermal ablation of lung tumors. Surg Oncol Clin N Am. 2011;20:369–87, ix.

    Google Scholar 

  11. Yamagami T, Kato T, Hirota T, Yoshimatsu R, Matsumoto T, Shimada J, et al. Risk factors for occurrence of local tumor progression after percutaneous radiofrequency ablation for lung neoplasms. Diagn Interv Radiol. 2007;13:199–203.

    PubMed  Google Scholar 

  12. de Baere T, Palussiere J, Auperin A, Hakime A, Abdel-Rehim M, Kind M, et al. Midterm local efficacy and survival after radiofrequency ablation of lung tumors with minimum follow-up of 1 year: prospective evaluation. Radiology. 2006;240:587–96.

    Article  PubMed  Google Scholar 

  13. Hiraki T, Sakurai J, Tsuda T, Gobara H, Sano Y, Mukai T, et al. Risk factors for local progression after percutaneous radiofrequency ablation of lung tumors: evaluation based on a preliminary review of 342 tumors. Cancer. 2006;107:2873–80.

    Article  PubMed  Google Scholar 

  14. Sofocleous CT, Klein KM, Hubbi B, Brown KT, Weiss SH, Kannarkat G, et al. Histopathologic evaluation of tissue extracted on the radiofrequency probe after ablation of liver tumors: preliminary findings. AJR Am J Roentgenol. 2004;183:209–13.

    Article  PubMed  Google Scholar 

  15. Snoeren N, Jansen MC, Rijken AM, van Hillegersberg R, Slooter G, Klaase J, et al. Assessment of viable tumour tissue attached to needle applicators after local ablation of liver tumours. Dig Surg. 2009;26:56–62.

    Article  PubMed  Google Scholar 

  16. Snoeren N, Huiskens J, Rijken AM, van Hillegersberg R, van Erkel AR, Slooter GD, et al. Viable tumor tissue adherent to needle applicators after local ablation: a risk factor for local tumor progression. Ann Surg Oncol. 2011;18:3702–10.

    Article  PubMed  Google Scholar 

  17. Sofocleous CT, Nascimento RG, Petrovic LM, Klimstra DS, Gonen M, Brown KT, et al. Histopathologic and immunohistochemical features of tissue adherent to multitined electrodes after RF ablation of liver malignancies can help predict local tumor progression: initial results. Radiology. 2008;249:364–74.

    Article  PubMed  Google Scholar 

  18. Sofocleous CT, Garg S, Petrovic LM, Gonen M, Petre EN, Klimstra DS, et al. Ki-67 is a prognostic biomarker of survival after radiofrequency ablation of liver malignancies. Ann Surg Oncol. 2012;19:4262–9.

    Article  PubMed  Google Scholar 

  19. Sofocleous CT, May B, Petre EN, Gonen M, Thornton RH, Alago W, et al. Pulmonary thermal ablation in patients with prior pneumonectomy. AJR Am J Roentgenol. 2011;196:W606–12.

    Article  PubMed  Google Scholar 

  20. Sofocleous CT, Sideras P, Petre EN, Solomon SB. Ablation for the management of pulmonary malignancies. AJR Am J Roentgenol. 2011;197:W581–9.

    Article  PubMed  Google Scholar 

  21. Jin GY, Lee JM, Lee YC, Han YM, Lim YS. Primary and secondary lung malignancies treated with percutaneous radiofrequency ablation: evaluation with follow-up helical CT. AJR Am J Roentgenol. 2004;183:1013–20.

    Article  PubMed  Google Scholar 

  22. Gillams A. Lung tumour ablation—where are we now? Cancer Imaging. 2008;8:116–7.

    Article  PubMed  CAS  Google Scholar 

  23. Rose SC, Dupuy DE, Gervais DA, Millward SF, Brown DB, Cardella JF, et al. Research reporting standards for percutaneous thermal ablation of lung neoplasms. J Vasc Interv Radiol. 2009;20:S474–85.

    Article  PubMed  Google Scholar 

  24. Budihardjo I, Oliver H, Lutter M, Luo X, Wang X. Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol. 1999;15:269–90.

    Article  PubMed  CAS  Google Scholar 

  25. Yang J, Ramnath N, Moysich KB, Asch HL, Swede H, Alrawi SJ, et al. Prognostic significance of MCM2, Ki-67 and gelsolin in non-small cell lung cancer. BMC Cancer. 2006;6:203.

    Article  PubMed  Google Scholar 

  26. King KL, Hwang JJ, Chau GY, Tsay SH, Chi CW, Lee TG, et al. Ki-67 expression as a prognostic marker in patients with hepatocellular carcinoma. J Gastroenterol Hepatol. 1998;13:273–9.

    Article  PubMed  CAS  Google Scholar 

  27. Smith S, Gillams A. Imaging appearances following thermal ablation. Clin Radiol. 2008;63:1–11.

    Article  PubMed  CAS  Google Scholar 

  28. Goldberg SN, Grassi CJ, Cardella JF, Charboneau JW, Dodd GD 3rd, Dupuy DE, et al. Image-guided tumor ablation: standardization of terminology and reporting criteria. J Vasc Interv Radiol. 2009;20:S377–90.

    Article  PubMed  Google Scholar 

  29. Kanzaki R, Higashiyama M, Maeda J, Okami J, Hosoki T, Hasegawa Y, et al. Clinical value of F18-fluorodeoxyglucose positron emission tomography-computed tomography in patients with non-small cell lung cancer after potentially curative surgery: experience with 241 patients. Interact Cardiovasc Thorac Surg. 2010;10:1009–14.

    Article  PubMed  Google Scholar 

  30. Wei LJ, Lin DY, Weissfeld L. Regression analysis of multivariate incomplete failure time data by modeling marginal distributions. J Am Stat Assoc. 1989;84:1065–73.

    Article  Google Scholar 

  31. R: A language and environment for statistical computing. R Development Core Team; R Foundation for Statistical Computing. Vienna; 2011.

  32. Vilar E, Salazar R, Perez-Garcia J, Cortes J, Oberg K, Tabernero J. Chemotherapy and role of the proliferation marker Ki-67 in digestive neuroendocrine tumors. Endocr Relat Cancer. 2007;14:221–32.

    Article  PubMed  CAS  Google Scholar 

  33. Fernandez-Cebrian JM, Nevado Santos M, Vorwald Kuborn P, Pardo de Lama M, Martín-Cavanna J, Pacheco Martínez P, et al. Can the clinical outcome in stage II colon carcinomas be predicted by determination of molecular marker expression? Clin Transl Oncol. 2007;9:663–70.

    Article  PubMed  CAS  Google Scholar 

  34. Clasen S, Krober SM, Kosan B, Aebert H, Fend F, Bomches A, et al. Pathomorphologic evaluation of pulmonary radiofrequency ablation: proof of cell death is characterized by DNA fragmentation and apoptotic bodies. Cancer. 2008;113:3121–9.

    Article  PubMed  Google Scholar 

  35. Jaskolka JD, Kachura JR, Hwang DM, Tsao MS, Waddell TK, Asch MR, et al. Pathologic assessment of radiofrequency ablation of pulmonary metastases. J Vasc Interv Radiol. 2010;21:1689–96.

    Article  PubMed  Google Scholar 

  36. Schneider T, Reuss D, Warth A, Schnabel PA, von Deimling A, Herth FJ, et al. The efficacy of bipolar and multipolar radiofrequency ablation of lung neoplasms—results of an ablate and resect study. Eur J Cardiothorac Surg. 2011;39:968–73.

    Article  PubMed  Google Scholar 

  37. Scholzen T, Gerdes J. The Ki-67 protein: from the known and the unknown. J Cell Physiol. 2000;182:311–22.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantinos T. Sofocleous MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sofocleous, C.T., Garg, S.K., Cohen, P. et al. Ki 67 is an Independent Predictive Biomarker of Cancer Specific and Local Recurrence-Free Survival After Lung Tumor Ablation. Ann Surg Oncol 20 (Suppl 3), 676–683 (2013). https://doi.org/10.1245/s10434-013-3140-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-013-3140-1

Keywords

Navigation