Skip to main content

Advertisement

Log in

Elevated Levels of Proliferating and Recently Migrated Tumor-associated Macrophages Confer Increased Aggressiveness and Worse Outcomes in Breast Cancer

  • Translational Research and Biomarkers
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Purpose

Macrophages play a major role in inflammatory processes and have been associated with poor prognosis in a variety of cancers, including breast cancer. Previously, we investigated the relationship of a subset of tumor-associated macrophages (PCNA+ TAMs) with clinicopathologic characteristics of breast cancer. We reported that high PCNA+ TAM counts were associated with hormone receptor (HR)-negative, high-grade tumors and early recurrence. To further understand the significance of elevated PCNA+ TAMs and the functionality of TAMs, we examined the expression of S100A8/S100A9 with the antibody Mac387. The heterodimeric S100A8/S100A9 complex plays a role in inflammation and is increased in several cancer types.

Methods

We performed immunohistochemistry using the Mac387 antibody on 367 invasive human breast cancer cases. Results were compared to previous PCNA+ TAM counts and were correlated with patient outcomes adjusting for HR status and histologic grade.

Results

Like PCNA+ TAMs, high Mac387 counts were associated with HR negativity, high tumor grade, younger age, and decreased recurrence-free survival. Mac387, however, appears to identify both a subset of macrophages and a subset of tumor cells. The concordance between Mac387 and PCNA+ TAM counts was low and cases that had both high Mac387 and high PCNA+ TAMs counts had a stronger association with early recurrence.

Conclusions

The presence of high numbers of PCNA+ TAMs and Mac387-positive cells in breast cancers with poor outcomes may implicate a subset of TAMs in breast cancer pathogenesis, and may ultimately serve to develop potential cellular targets for therapeutic interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Eubank TD, Galloway M, Montague CM, Waldman WJ, Marsh CB. M-CSF induces vascular endothelial growth factor production and angiogenic activity from human monocytes. J Immunol. 2003;171:2637–43.

    PubMed  CAS  Google Scholar 

  2. Lewis CE, Leek R, Harris A, McGee JO. Cytokine regulation of angiogenesis in breast cancer: the role of tumor-associated macrophages. J Leukoc Biol. 1995;57:747–51.

    PubMed  CAS  Google Scholar 

  3. Lin EY, Pollard JW. Tumor-associated macrophages press the angiogenic switch in breast cancer. Cancer Res. 2007;67:5064–6.

    Article  PubMed  CAS  Google Scholar 

  4. Lin EY, Li JF, Gnatovskiy L, et al. Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res. 2006;66:11238–46.

    Article  PubMed  CAS  Google Scholar 

  5. Talmadge JE, Donkor M, Scholar E. Inflammatory cell infiltration of tumors: Jekyll or Hyde. Cancer Metastasis Rev. 2007;26:373–400.

    Article  PubMed  Google Scholar 

  6. Chang YC, Chen TC, Lee CT, et al. Epigenetic control of MHC class II expression in tumor-associated macrophages by decoy receptor 3. Blood. 2008;111:5054–63.

    Article  PubMed  CAS  Google Scholar 

  7. Van Ginderachter JA, Movahedi K, Hassanzadeh Ghassabeh G, et al. Classical and alternative activation of mononuclear phagocytes: picking the best of both worlds for tumor promotion. Immunobiology. 2006;211:487–501.

    Article  PubMed  Google Scholar 

  8. Mosser DM. The many faces of macrophage activation. J Leukoc Biol. 2003;73:209–12.

    Article  PubMed  CAS  Google Scholar 

  9. Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8:958–69.

    Article  PubMed  CAS  Google Scholar 

  10. Evans R, Cullen RT. In situ proliferation of intratumor macrophages. J Leukoc Biol. 1984;35:561–72.

    PubMed  CAS  Google Scholar 

  11. Stewart CC. Local proliferation of mononuclear phagocytes in tumors. J Reticuloendothel Soc. 1983;34:23–7.

    PubMed  CAS  Google Scholar 

  12. Stewart CC, Beetham KL. Cytocidal activity and proliferative ability of macrophages infiltrating the EMT6 tumor. Int J Cancer. 1978;22:152–9.

    Article  PubMed  CAS  Google Scholar 

  13. Gottfried E, Kunz-Schughart LA, Weber A, et al. Expression of CD68 in non-myeloid cell types. Scand J Immunol. 2008;67:453–63.

    Article  PubMed  CAS  Google Scholar 

  14. Leonardi E, Girlando S, Serio G, et al. PCNA and Ki67 expression in breast carcinoma: correlations with clinical and biological variables. J Clin Pathol. 1992;45:416–9.

    Article  PubMed  CAS  Google Scholar 

  15. Campbell MJ, Tonlaar NY, Garwood ER, et al. Proliferating macrophages associated with high grade, hormone receptor negative breast cancer and poor clinical outcome. Breast Cancer Res Treat. 2011;128:703–11.

    Article  PubMed  Google Scholar 

  16. Isbel NM, Nikolic-Paterson DJ, Hill PA, Dowling J, Atkins RC. Local macrophage proliferation correlates with increased renal M-CSF expression in human glomerulonephritis. Nephrol Dial Transplant. 2001;16:1638–47.

    Article  PubMed  CAS  Google Scholar 

  17. Shiomi M, Yamada S, Ito T. Atheroma stabilizing effects of simvastatin due to depression of macrophages or lipid accumulation in the atheromatous plaques of coronary plaque-prone WHHL rabbits. Atherosclerosis. 2005;178:287–94.

    Article  PubMed  CAS  Google Scholar 

  18. Fischer-Smith T, Croul S, Adeniyi A, et al. Macrophage/microglial accumulation and proliferating cell nuclear antigen expression in the central nervous system in human immunodeficiency virus encephalopathy. Am J Pathol. 2004;164:2089–99.

    Article  PubMed  CAS  Google Scholar 

  19. Zenger E, Abbey NW, Weinstein MD, et al. Injection of human primary effusion lymphoma cells or associated macrophages into severe combined immunodeficient mice causes murine lymphomas. Cancer Res. 2002;62:5536.

    PubMed  CAS  Google Scholar 

  20. Liu J, Li Z, Cui J, Xu G, Cui G. Cellular changes in the tumor microenvironment of human esophageal squamous cell carcinomas. Tumour Biol. 2012;33:495–505.

    Article  PubMed  CAS  Google Scholar 

  21. Arai K, Takano S, Teratani T, Ito Y, Yamada T, Nozawa R. S100A8 and S100A9 overexpression is associated with poor pathological parameters in invasive ductal carcinoma of the breast. Curr Cancer Drug Targets. 2008;8:243–52.

    Article  PubMed  CAS  Google Scholar 

  22. Subimerb C, Pinlaor S, Lulitanond V, et al. Circulating CD14(+) CD16(+) monocyte levels predict tissue invasive character of cholangiocarcinoma. Clin Exp Immunol. 2010;161:471–9.

    Article  PubMed  CAS  Google Scholar 

  23. Gebhardt C, Breitenbach U, Tuckermann JP, Dittrich BT, Richter KH, Angel P. Calgranulins S100A8 and S100A9 are negatively regulated by glucocorticoids in a c-Fos-dependent manner and overexpressed throughout skin carcinogenesis. Oncogene. 2002;21:4266–76.

    Article  PubMed  CAS  Google Scholar 

  24. Kim HJ, Kang HJ, Lee H, et al. Identification of S100A8 and S100A9 as serological markers for colorectal cancer. J Proteome Res. 2009;8:1368–79.

    Article  PubMed  CAS  Google Scholar 

  25. Hermani A, Hess J, De Servi B, et al. Calcium-binding proteins S100A8 and S100A9 as novel diagnostic markers in human prostate cancer. Clin Cancer Res. 2005;11:5146–52.

    Article  PubMed  CAS  Google Scholar 

  26. Chin K, DeVries S, Fridlyand J, et al. Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell. 2006;10:529–41.

    Article  PubMed  CAS  Google Scholar 

  27. Mukhtar R, Moore A, Nseyo O, et al. Evaluation of levels of proliferating macrophages in patients at a county hospital and those with early recurrences. J Clin Oncol. 2010;28(15 Suppl):1110.

    Google Scholar 

  28. Huo D, Ikpatt F, Khramtsov A, et al. Population differences in breast cancer: survey in indigenous African women reveals over-representation of triple-negative breast cancer. J Clin Oncol. 2009;27:4515–21.

    Article  PubMed  CAS  Google Scholar 

  29. Mukhtar RA, Moore AP, Nseyo O, et al. Elevated PCNA+ tumor-associated macrophages in breast cancer are associated with early recurrence and non-Caucasian ethnicity. Breast Cancer Res Treat. 2011;130:635–44.

    Article  PubMed  CAS  Google Scholar 

  30. Shabo I, Stal O, Olsson H, Dore S, Svanvik J. Breast cancer expression of CD163, a macrophage scavenger receptor, is related to early distant recurrence and reduced patient survival. Int J Cancer. 2008;123:780–6.

    Article  PubMed  CAS  Google Scholar 

  31. Shabo I, Svanvik J. Expression of macrophage antigens by tumor cells. Adv Exp Med Biol. 2011;714:141–50.

    Article  PubMed  CAS  Google Scholar 

  32. Allavena P, Sica A, Solinas G, Porta C, Mantovani A. The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. Crit Rev Oncol Hematol. 2008;66:1–9.

    Article  PubMed  Google Scholar 

  33. Fujimoto H, Sangai T, Ishii G, et al. Stromal MCP-1 in mammary tumors induces tumor-associated macrophage infiltration and contributes to tumor progression. Int J Cancer. 2009;125:1276–84.

    Article  PubMed  CAS  Google Scholar 

  34. Eubank TD, Roberts RD, Khan M, et al. Granulocyte macrophage colony-stimulating factor inhibits breast cancer growth and metastasis by invoking an anti-angiogenic program in tumor-educated macrophages. Cancer Res. 2009;69:2133–40.

    Article  PubMed  CAS  Google Scholar 

  35. Lin EY, Pollard JW. Macrophages: modulators of breast cancer progression. Novartis Found Symp. 2004;256:158–68.

    Article  PubMed  CAS  Google Scholar 

  36. Sinha P, Clements VK, Miller S, Ostrand-Rosenberg S. Tumor immunity: a balancing act between T cell activation, macrophage activation and tumor-induced immune suppression. Cancer Immunol Immunother. 2005;54:1137–42.

    Article  PubMed  CAS  Google Scholar 

  37. Sinha P, Clements VK, Bunt SK, Albelda SM, Ostrand-Rosenberg S. Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response. J Immunol. 2007;179:977–83.

    PubMed  CAS  Google Scholar 

  38. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004;25:677–86.

    Article  PubMed  CAS  Google Scholar 

  39. DeNardo DG, Barreto JB, Andreu P, et al. CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell. 2009;16:91–102.

    Article  PubMed  CAS  Google Scholar 

  40. Laoui D, Movahedi K, Van Overmeire E, et al. Tumor-associated macrophages in breast cancer: distinct subsets, distinct functions. Int J Dev Biol. 2011;55:861–7.

    Article  PubMed  Google Scholar 

  41. Volodko NRA, Rudas M, Jakesz R. Tumour-associated macrophages in breast cancer and their prognostic correlations. Breast. 1998;7:99–105.

    Article  Google Scholar 

  42. Leek RD, Landers RJ, Harris AL, Lewis CE. Necrosis correlates with high vascular density and focal macrophage infiltration in invasive carcinoma of the breast. Br J Cancer. 1999;79:991–5.

    Article  PubMed  CAS  Google Scholar 

  43. Balkwill F, Mantovani A. Cancer and inflammation: implications for pharmacology and therapeutics. Clin Pharmacol Ther. 2010;87:401–6.

    Article  PubMed  CAS  Google Scholar 

  44. Patsialou A, Wyckoff J, Wang Y, Goswami S, Stanley ER, Condeelis JS. Invasion of human breast cancer cells in vivo requires both paracrine and autocrine loops involving the colony-stimulating factor-1 receptor. Cancer Res. 2009;69:9498–506.

    Article  PubMed  CAS  Google Scholar 

  45. Ehrchen JM, Sunderkotter C, Foell D, Vogl T, Roth J. The endogenous Toll-like receptor 4 agonist S100A8/S100A9 (calprotectin) as innate amplifier of infection, autoimmunity, and cancer. J Leukoc Biol. 2009;86:557–66.

    Article  PubMed  CAS  Google Scholar 

  46. Manitz MP, Horst B, Seeliger S, et al. Loss of S100A9 (MRP14) results in reduced interleukin-8-induced CD11b surface expression, a polarized microfilament system, and diminished responsiveness to chemoattractants in vitro. Mol Cell Biol. 2003;23:1034–43.

    Article  PubMed  CAS  Google Scholar 

  47. Vogl T, Ludwig S, Goebeler M, et al. MRP8 and MRP14 control microtubule reorganization during transendothelial migration of phagocytes. Blood. 2004;104:4260–8.

    Article  PubMed  CAS  Google Scholar 

  48. Buckner CM, Calderon TM, Willams DW, Belbin TJ, Berman JW. Characterization of monocyte maturation/differentiation that facilitates their transmigration across the blood–brain barrier and infection by HIV: implications for NeuroAIDS. Cell Immunol. 2011;267:109–23.

    Article  PubMed  CAS  Google Scholar 

  49. McKiernan E, McDermott EW, Evoy D, Crown J, Duffy MJ. The role of S100 genes in breast cancer progression. Tumour Biol. 2011;32:441–50.

    Article  PubMed  CAS  Google Scholar 

  50. Gebhardt C, Nemeth J, Angel P, Hess J. S100A8 and S100A9 in inflammation and cancer. Biochem Pharmacol. 2006;72:1622–31.

    Article  PubMed  CAS  Google Scholar 

  51. Marigo I, Dolcetti L, Serafini P, Zanovello P, Bronte V. Tumor-induced tolerance and immune suppression by myeloid derived suppressor cells. Immunol Rev. 2008;222:162–79.

    Article  PubMed  CAS  Google Scholar 

  52. Sinha P, Okoro C, Foell D, Freeze HH, Ostrand-Rosenberg S, Srikrishna G. Proinflammatory S100 proteins regulate the accumulation of myeloid-derived suppressor cells. J Immunol. 2008;181:4666–75.

    PubMed  CAS  Google Scholar 

  53. Pawelek JM. Cancer-cell fusion with migratory bone-marrow-derived cells as an explanation for metastasis: new therapeutic paradigms. Future Oncol. 2008;4:449–52.

    Article  PubMed  Google Scholar 

  54. Pawelek JM. Tumour-cell fusion as a source of myeloid traits in cancer. Lancet Oncol. 2005;6:988–93.

    Article  PubMed  CAS  Google Scholar 

  55. Pawelek JM, Chakraborty AK. Fusion of tumour cells with bone marrow–derived cells: a unifying explanation for metastasis. Nat Rev Cancer. 2008;8:377–86.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the California Breast Cancer Research Program Postdoctoral fellowship 15FB-0108 (RAM), the Director of the Office of Biological and Environmental Research, U.S. Department of Energy contract DE-AC02-05CH11231, and by the National Institutes of Health, National Cancer Institute, grant P50 CA 58207 (JWG).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura J. Esserman MD, MBA.

Additional information

Michael J. Campbel and Laura J. Esserman contributed equally to this work, and both should be considered senior author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukhtar, R.A., Moore, A.P., Tandon, V.J. et al. Elevated Levels of Proliferating and Recently Migrated Tumor-associated Macrophages Confer Increased Aggressiveness and Worse Outcomes in Breast Cancer. Ann Surg Oncol 19, 3979–3986 (2012). https://doi.org/10.1245/s10434-012-2415-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-012-2415-2

Keywords

Navigation