Skip to main content

Advertisement

Log in

Enhancing Surgical Vision by Using Real-Time Imaging of αvβ3-Integrin Targeted Near-Infrared Fluorescent Agent

  • Translational Research
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

This study was designed to improve the surgical procedure and outcome of cancer surgery by means of real-time molecular imaging feedback of tumor spread and margin delineation using targeted near-infrared fluorescent probes with specificity to tumor biomarkers. Surgical excision of cancer often is confronted with difficulties in the identification of cancer spread and the accurate delineation of tumor margins. Currently, the assessment of tumor borders is afforded by postoperative pathology or, less reliably, intraoperative frozen sectioning. Fluorescence imaging is a natural modality for intraoperative use by directly relating to the surgeon’s vision and offers highly attractive characteristics, such as high-resolution, sensitivity, and portability. Via the use of targeted probes it also becomes highly tumor-specific and can lead to significant improvements in surgical procedures and outcome.

Methods

Mice bearing xenograft human tumors were injected with αvβ3-integrin receptor-targeted fluorescent probe and in vivo visualized by using a novel, real-time, multispectral fluorescence imaging system. Confirmatory ex vivo imaging, bioluminescence imaging, and histopathology were used to validate the in vivo findings.

Results

Fluorescence images were all in good correspondence with the confirming bioluminescence images in respect to signal colocalization. Fluorescence imaging detected all tumors and successfully guided total tumor excision by effectively detecting small tumor residuals, which occasionally were missed by the surgeon. Tumor tissue exhibited target-to-background ratio of ~4.0, which was significantly higher compared with white-light images representing the visual contrast. Histopathology confirmed the capability of the method to identify tumor negative margins with high specificity and better prediction rate compared with visual inspection.

Conclusions

Real-time multispectral fluorescence imaging using tumor specific molecular probes is a promising modality for tumor excision by offering real time feedback to the surgeon in the operating room.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fang W, Chen W, Chen G, et al. Surgical management of thymic epithelial tumors: a retrospective review of 204 cases. Ann Thorac Surg. 2005;80(6):2002–7.

    Article  PubMed  Google Scholar 

  2. Mendenhall WM, Zlotecki RA, Hochwald SN, et al. Retroperitoneal soft tissue sarcoma. Cancer. 2005;104(4):669–75.

    Article  PubMed  Google Scholar 

  3. Pitz CC, de la Riviere AB, van Swieten HA, et al. Surgical treatment of Pancoast tumours. Eur J Cardiothorac Surg. 2004;26(1):202–8.

    Article  PubMed  Google Scholar 

  4. Pendlebury SC, Ivanov O, Renwick S, et al. Long-term review of a breast conservation series and patterns of care over 18 years. ANZ J Surg. 2003;73(8):577–83.

    Article  PubMed  Google Scholar 

  5. Kestin LL, Goldstein NS, Lacerna MD, et al. Factors associated with local recurrence of mammographically detected ductal carcinoma in situ in patients given breast-conserving therapy. Cancer. 2000;88(3):596–607.

    Article  PubMed  CAS  Google Scholar 

  6. Lacquet LK. The present status of surgery for lung cancer. Acta Chir Belg. 1996;96(6):245–51.

    PubMed  CAS  Google Scholar 

  7. Gage I, Schnitt SJ, Nixon AJ, et al. Pathologic margin involvement and the risk of recurrence in patients treated with breast-conserving therapy. Cancer. 1996;78(9):1921–8.

    Article  PubMed  CAS  Google Scholar 

  8. Pleijhuis RG, Graafland M, de Vries J, et al. Obtaining adequate surgical margins in breast-conserving therapy for patients with early-stage breast cancer: current modalities and future directions. Ann Surg Oncol. 2009;16:2717–2730.

    Article  PubMed  Google Scholar 

  9. de Gara CJ, Hanson J, Hamilton S. A population-based study of tumor-node relationship, resection margins, and surgeon volume on gastric cancer survival. Am J Surg. 2003;186(1):23–7.

    Article  PubMed  Google Scholar 

  10. Cao D, Lin C, Woo SH, et al. Separate cavity margin sampling at the time of initial breast lumpectomy significantly reduces the need for reexcisions. Am J Surg Pathol. 2005;29(12):1625–32.

    Article  PubMed  Google Scholar 

  11. DiMusto PD, Orringer MB. Transhiatal esophagectomy for distal and cardia cancers: implications of a positive gastric margin. Ann Thorac Surg. 2007;83(6):1993–8 (discussion 1998–9)

    Article  PubMed  Google Scholar 

  12. Wray CJ, Ahmad SA, Matthews JB, et al. Surgery for pancreatic cancer: recent controversies and current practice. Gastroenterology. 2005;128(6):1626–41.

    Article  PubMed  Google Scholar 

  13. Braat AE, Oosterhuis JW, de Vries JE, et al. Lymphatic staging in colorectal cancer: pathologic, molecular, and sentinel node techniques. Dis Colon Rectum. 2005;48(2):371–83.

    Article  PubMed  CAS  Google Scholar 

  14. Adamovich TL, Simmons RM. Ductal carcinoma in situ with microinvasion. Am J Surg. 2003;186(2):112–6.

    Article  PubMed  Google Scholar 

  15. Juretzka MM, Chi DS, Sonoda Y. Update on surgical treatment for endometrial cancer. Expert Rev Anticancer Therapy. 2005;5(1):113–21.

    Article  Google Scholar 

  16. Smeets A, Christiaens MR. Implications of the sentinel lymph node procedure for local and systemic adjuvant treatment. Curr Opin Oncol. 2005;17(6):539–44.

    Article  PubMed  Google Scholar 

  17. Roukos DH, Kappas AM. Perspectives in the treatment of gastric cancer. Nat Clin Pract Oncol. 2005;2(2):98–107.

    Article  PubMed  Google Scholar 

  18. Tsukamoto T, Kitamura H, Takahashi A, et al. Treatment of invasive bladder cancer: lessons from the past and perspective for the future. Jpn J Clin Oncol. 2004;34(6):295–306.

    Article  PubMed  Google Scholar 

  19. Kabuto M, Kubota T, Kobayashi H, et al. Experimental and clinical study of detection of glioma at surgery using fluorescent imaging by a surgical microscope after fluorescein administration. Neurol Res. 1997;19(1):9–16.

    PubMed  CAS  Google Scholar 

  20. Moore GE. Fluorescein as an agent in the differentiation of normal and malignant tissues. Science. 1947;106(2745):130–1.

    Article  PubMed  CAS  Google Scholar 

  21. Stummer W, Reulen HJ, Novotny A, et al. Fluorescence-guided resections of malignant gliomas—an overview. Acta Neurochir Suppl. 2003;88:9–12.

    PubMed  CAS  Google Scholar 

  22. Stummer W, Stocker S, Wagner S, et al. Intraoperative detection of malignant gliomas by 5-aminolevulinic acid-induced porphyrin fluorescence. Neurosurgery. 1998;42(3):518–25; discussion 525–6

    Article  PubMed  CAS  Google Scholar 

  23. Haglund MM, Berger MS, Hochman DW. Enhanced optical imaging of human gliomas and tumor margins. Neurosurgery. 1996;38(2):308–17.

    Article  PubMed  CAS  Google Scholar 

  24. Kremer P, Wunder A, Sinn H, et al. Laser-induced fluorescence detection of malignant gliomas using fluorescein-labeled serum albumin: experimental and preliminary clinical results. Neurol Res. 2000;22(5):481–9.

    PubMed  CAS  Google Scholar 

  25. Kircher MF, Mahmood U, King RS, et al. A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation. Cancer Res. 2003;63(23):8122–5.

    PubMed  CAS  Google Scholar 

  26. Adusumilli PS, Stiles BM, Chan MK, et al. Real-time diagnostic imaging of tumors and metastases by use of a replication-competent herpes vector to facilitate minimally invasive oncological surgery. FASEB J. 2006;20(6):726–8.

    PubMed  CAS  Google Scholar 

  27. Stummer W, Novotny A, Stepp H, et al. Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospective study in 52 consecutive patients. J Neurosurg. 2000;93(6):1003–13.

    Article  PubMed  CAS  Google Scholar 

  28. Eisenberg DP, Adusumilli PS, Hendershott KJ, et al. Real-time intraoperative detection of breast cancer axillary lymph node metastases using a green fluorescent protein-expressing herpes virus. Ann Surg. 2006;243(6):824–30 (discussion 830–2).

    Article  PubMed  Google Scholar 

  29. Tanaka E, Choi HS, Fujii H, et al. Image-guided oncologic surgery using invisible light: completed pre-clinical development for sentinel lymph node mapping. Ann Surg Oncol. 2006;13(12):1671–81.

    Article  PubMed  Google Scholar 

  30. Sato K, Nariai T, Sasaki S, et al. Intraoperative intrinsic optical imaging of neuronal activity from subdivisions of the human primary somatosensory cortex. Cereb Cortex. 2002;12(3):269–80.

    Article  PubMed  Google Scholar 

  31. Haglund MM, Hochman DW. Imaging of intrinsic optical signals in primate cortex during epileptiform activity. Epilepsia. 2007;48(Suppl 4):65–74.

    Article  PubMed  Google Scholar 

  32. Nakayama A, del Monte F, Hajjar RJ, et al. Functional near-infrared fluorescence imaging for cardiac surgery and targeted gene therapy. Mol Imaging. 2002;1(4):365–77.

    Article  PubMed  Google Scholar 

  33. Bogaards A, Varma A, Collens SP, et al. Increased brain tumor resection using fluorescence image guidance in a preclinical model. Lasers Surg Med. 2004;35(3):181–90.

    Article  PubMed  Google Scholar 

  34. Ray ER, Chatterton K, Khan MS, et al. Hexylaminolaevulinate ‘blue light’ fluorescence cystoscopy in the investigation of clinically unconfirmed positive urine cytology. BJU Int. 2009;103(10):1363–7.

    Article  PubMed  Google Scholar 

  35. Bogaards A, Varma A, Collens SP, et al. Increased brain tumor resection using fluorescence image guidance in a preclinical model. Lasers Surg Med. 2004; 35(3):181–90.

    Article  PubMed  Google Scholar 

  36. Stummer W, Novotny A, Stepp H, et al. Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospective study in 52 consecutive patients. J Neurosurg. 2000;93(6):1003–13.

    Article  PubMed  CAS  Google Scholar 

  37. Ntziachristos V, Ripoll J, Wang LV, et al. Looking and listening to light: the evolution of whole-body photonic imaging. Nat Biotechnol. 2005;23(3):313–20.

    Article  PubMed  CAS  Google Scholar 

  38. Yang VX, Muller PJ, Herman P, et al. A multispectral fluorescence imaging system: design and initial clinical tests in intra-operative Photofrin-photodynamic therapy of brain tumors. Lasers Surg Med. 2003;32(3):224–32.

    Article  PubMed  Google Scholar 

  39. Ntziachristos V, Turner G, Dunham J, et al. Planar fluorescence imaging using normalized data. J Biomed Opt. 2005;10(6):064007.

    Article  PubMed  Google Scholar 

  40. Bogaards A, Sterenborg HJ, Trachtenberg J, et al. In vivo quantification of fluorescent molecular markers in real-time by ratio imaging for diagnostic screening and image-guided surgery. Lasers Surg Med. 2007;39(7):605–13.

    Article  PubMed  CAS  Google Scholar 

  41. Themelis G, Yoo JS, Ntziachristos V. Multispectral imaging using multiple-bandpass filters. Opt Lett. 2008;33(9):1023–5.

    Article  PubMed  Google Scholar 

  42. Themelis G, Yoo JS, Soh KS, et al. Real-time intraoperative fluorescence imaging system using light-absorption correction. J Biomed Opt. 2009;14(6):064012.

    Article  PubMed  Google Scholar 

  43. Vellon L, Menendez JA, Lupu R. AlphaVbeta3 integrin regulates heregulin (HRG)-induced cell proliferation and survival in breast cancer. Oncogene. 2005;24(23):3759–73.

    Article  PubMed  CAS  Google Scholar 

  44. Rabb H, Barroso-Vicens E, Adams R, et al. Alpha-V/beta-3 and alpha-V/beta-5 integrin distribution in neoplastic kidney. Am J Nephrol. 1996;16(5):402–8.

    Article  PubMed  CAS  Google Scholar 

  45. Pecheur I, Peyruchaud O, Serre CM, et al. Integrin alpha(v)beta3 expression confers on tumor cells a greater propensity to metastasize to bone. FASEB J. 2002;16(10):1266–8.

    PubMed  CAS  Google Scholar 

  46. Gasparini G, Brooks PC, Biganzoli E, et al. Vascular integrin alpha(v)beta3: a new prognostic indicator in breast cancer. Clin Cancer Res. 1998;4(11):2625–34.

    PubMed  CAS  Google Scholar 

  47. Kossodo S, Pickarski M, Lin SA, et al. Dual in vivo quantification of integrin-targeted and protease-activated agents in cancer using fluorescence molecular tomography (FMT). Mol Imaging Biol. 12(5):488–99.

  48. Weissleder R, Tung CH, Mahmood U, et al. In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat Biotechnol. 1999;17(4):375–8.

    Article  PubMed  CAS  Google Scholar 

  49. Razansky D. Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo. Nat Photon. 2009;3:412–417.

    Google Scholar 

Download references

Acknowledgment

The authors thank, Claudia Mayerhofer, Tineke van der Sluis, Christoph Drebinger, and Monica Tost for their technical assistance. W.K. is supported as a clinical fellow by the Dutch Cancer Society (RUG 2008-4382). V.N. acknowledges support from BMBF Grant MOBITUM and the ERC Senior Investigator Award grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Themelis PhD.

Additional information

George Themelis and Niels J. Harlaar contributed equally to this work.

Electronic supplementary material

Schematic of the imaging system used, capable to capture simultaneously, in real-time three imaging channels: color reflectance, fluorescence, and intrinsic (excitation). A halogen light source is used for white light illumination and a 672-nm diode laser for fluorescence excitation. Images (b-d) illustrate a vial with Cy5.5 lying on a color chart captured in color (b), intrinsic (c), and fluorescence (d) mode

(DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Themelis, G., Harlaar, N.J., Kelder, W. et al. Enhancing Surgical Vision by Using Real-Time Imaging of αvβ3-Integrin Targeted Near-Infrared Fluorescent Agent. Ann Surg Oncol 18, 3506–3513 (2011). https://doi.org/10.1245/s10434-011-1664-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-011-1664-9

Keywords

Navigation