Skip to main content

Advertisement

Log in

The Hypoxic Environment in Tumor-Stromal Cells Accelerates Pancreatic Cancer Progression via the Activation of Paracrine Hepatocyte Growth Factor/c-Met Signaling

  • Hepatic and Pancreatic Tumors
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Pancreatic cancer is one of the representative solid tumors, in which the hypoxic microenvironment plays a crucial role in malignant progression. We previously demonstrated that tumor-stromal interaction under hypoxia enhances the invasiveness of pancreatic cancer cells through hepatocyte growth factor (HGF)/c-Met signaling.

Methods

We investigated the immunohistochemical expression of hypoxia inducible factor-1α (HIF-1α) c-Met, and HGF in both cancer and stromal cells using 41 pancreatic cancer tissue specimens, and tried to identify any correlations with the clinical features and survival.

Results

Positive staining for HIF-1α was observed in both pancreatic cancer and the surrounding stromal cells in more than 30% of the cases, and it significantly correlated with lymph node metastasis (P < .05). A significant correlation was observed between the expression of HIF-1α and HGF in stromal cells (P < .05). In addition, the c-Met expression in cancer cells was found to significantly correlate with the HGF expression in not only cancer but also stromal cells. The disease-free survival rates of the patients with HIF-1α in cancer, stromal, c-Met in cancer, and an HGF expression in stromal cells was significantly worse than those without such expressions (P < .05).

Conclusions

These data suggest that the HGF/c-Met signaling via HIF-1α ?may therefore negatively affect the prognosis in patients with pancreatic cancer, and targeting tumor stroma under hypoxia might thus be potentially useful as a novel therapy for this cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.

Similar content being viewed by others

References

  1. Warshaw AL, Fernandez-del Castillo C. Pancreatic carcinoma. N Engl J Med 1992; 326:455–65

    Article  PubMed  CAS  Google Scholar 

  2. Vaupel P, Thews O, Hoeckel M. Treatment resistance of solid tumors: role of hypoxia and anemia. Med Oncol 2001; 18:243–59

    Article  PubMed  CAS  Google Scholar 

  3. Semenza GL. HIF-1 and tumor progression: pathophysiology and therapeutics. Tredds Mol Biol 2002; 8:S62–67

    CAS  Google Scholar 

  4. Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev 2003; 3:721–32

    Article  CAS  Google Scholar 

  5. Jaakkola P, Mole DR, Tian YM, et al. Targeting of HIF-1α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 2001; 292:468–72

    PubMed  CAS  Google Scholar 

  6. Maxwell PH, Dachs GU, Gleadle JM, et al. Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proc Natl Acad Sci USA 1997; 94:8104–9

    Article  PubMed  CAS  Google Scholar 

  7. Koong AC, Mehta VK, Le QT, et al. Pancreatic tumors show high levels of hypoxia. Int J Radiat Oncol Biol Phys 2000; 48:919–22

    Article  PubMed  CAS  Google Scholar 

  8. Durand RE, Raleigh JA. Identification of nonproliferating but viable hypoxic tumor cells in vivo. Cancer Res 1998; 58:3547–50

    PubMed  CAS  Google Scholar 

  9. DiMagno EP, Reber HA, Tempero MA. AGA Technical review on the epidemiology, diagnosis, and treatment of pancreatic ductal adenocarcinoma. Gastroenterology 1999; 117:1464–84

    Article  PubMed  CAS  Google Scholar 

  10. Kloppel G, Lingenthal G, von Bulow M, Kern HF. Histological and fine structural features of pancreatic ductal adenocarcinomas in relation to growth and prognosis: studies in xenografted tumours and clinico-histopathological correlation in a series of 75 cases. Histopathology 1985; 9:841–56

    Article  PubMed  CAS  Google Scholar 

  11. Dvorak HF. Tumors: wounds that do not heal: similarities between tumor stroma generation and wound healing. N Engl J Med 1986; 315:1650–9

    Article  PubMed  CAS  Google Scholar 

  12. Di Renzo MF, Poulsom R, Olivero M, Comoglio PM, Lemoine NR. Expression of the Met/hepatocyte growth factor receptor in human pancreatic cancer. Cancer Res 1995; 55:1129–38

    PubMed  CAS  Google Scholar 

  13. Nakamura T, Nawa K, Ichihara A. Partial purification and characterization of hepatocyte growth factor from serum of hepatectomized rats. Biochem Biophys Res Commun 1984; 122:1450–9

    Article  PubMed  CAS  Google Scholar 

  14. Nakamura T, Nishizawa T, Hagiya M, et al. Molecular cloning and expression of human hepatocyte growth factor. Nature 1989; 342:440–3

    Article  PubMed  CAS  Google Scholar 

  15. Montesano R, Matsumoto K, Nakamura T, Orci L. Identification of a fibroblast-derived epithelial morphogen as hepatocyte growth factor. Cell 1991; 67:901–8

    Article  PubMed  CAS  Google Scholar 

  16. Ramirez R, Hsu D, Patel A, Fenton C, Dinauer C, Tuttle RM, Francis GL. Over-expression of hapatocyte growth factor/scatter factor (HGF/SF) and the HGF/SF receptor (cMET) are associated with a high risk of metastasis and recurrence for children and young adults with thyroid carcinoma. Clin Endocrinol 2000; 53:635–44

    Article  CAS  Google Scholar 

  17. Ueki T, Fujimoto J, Suzuki T, Yamamoto H, Okamoto E. Expression of hepatocyte growth factor and its receptor c-met protooncogene in hepatocellular carcinoma. Hepatology 1997; 25:862–6

    Article  PubMed  CAS  Google Scholar 

  18. Ide T, Kitajima Y, Miyoshi A, et al. Tumor-stromal cell interaction under hypoxia increases the invasiveness of pancreatic cancer through the hapatocyte growth factor/c-Met pathway. Int J Cancer 2006; 119:2750–9

    Article  PubMed  CAS  Google Scholar 

  19. Sakamoto Y, Kitajima Y, Edakuni G, Sasatomi E, Mori M, Kitahara K, Miyazaki K. Expression of Trk tyrosine kinase receptor is a biologic marker for cell proliferation and perineural invasion of human pancreatic ductal adenocarcinoma. Oncol Rep 2001; 8:477–84

    PubMed  CAS  Google Scholar 

  20. Hockel M, Vaupel P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst 2001; 93:266–76

    Article  PubMed  CAS  Google Scholar 

  21. Rice GC, Hoy C, Schimke RT. Transient hypoxia enhances the frequency of dihydrofolate reductase gene amplification in Chinese hamster ovary cells. Proc Natl Acad Sci USA 1986; 83:5978–82

    Article  PubMed  CAS  Google Scholar 

  22. Gray LH, Conger AD, Ebert M, Hornsey S, Scott OC. Concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br J Radiol 1953; 26:638–48

    Article  PubMed  CAS  Google Scholar 

  23. Shibaji T, Nagao M, Ikeda N, et al. Prognostic significance of HIF-1α ?overexpression in human pancreatic cancer. Anticancer Res 2003; 23:4721–8

    PubMed  CAS  Google Scholar 

  24. Sethi T, Rintoul RC, Moore SM, et al. Extracellular matrix proteins protect small cell lung cancer cells against apoptosis: a mechanism for small cell lung cancer growth and drug resistance in vivo. Nat Med 1999; 5:662–8

    Article  PubMed  CAS  Google Scholar 

  25. Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF. Met, metastasis, motility and more. Nat Rev Mol Cell Biol 2003; 4:915–25

    Article  PubMed  CAS  Google Scholar 

  26. Qian LW, Mizumoto K, Maehara N, et al. Co-cultivation of pancreatic cancer cells with orthotopic tumor-derived fibroblasts stimulate tumor cell invasion via HGF secretion whereas cancer cells exert a minor regulative effect on fibroblasts HGF production. Cancer Lett 2003; 190:105–12

    Article  PubMed  CAS  Google Scholar 

  27. Nilsson I, Shibuya M, Wennstrom S. Differential activation of vascular genes by hypoxia in primary endothelial cells. Exp Cell Res 2004; 299:476–85

    Article  PubMed  CAS  Google Scholar 

  28. Katsuta M, Miyashita M, Makino H, et al. Correlation of hypoxia inducible factor-1α with lymphatic metastasis via vascular endothelial growth factor-C in human esophageal cancer. Exp Mol Pathol 2005; 78:123–30

    Article  PubMed  CAS  Google Scholar 

  29. Okada K, Osaki M, Araki K, Ishiguro K, Ito H, Ohgi S. Expression of hypoxia-inducible factor (HIF-1 alpha), VEGF-C and VEGF-D in non-invasive and invasive breast ductal carcinomas. Anticancer Res 2005; 25:3003–9

    PubMed  CAS  Google Scholar 

  30. Tsukinoki K, Yasuda M, Mori Y, et al. Hepatocyte growth factor and c-Met immunoreactivity are associated with metastasis in high grade salivary gland carcinoma. Oncol Rep 2004; 12:1017–21

    PubMed  CAS  Google Scholar 

  31. Semenza GL. Expression of hypoxia-inducible factor 1: mechanisms and consequences. Biochem Pharmacol 2000; 59:47–53

    Article  PubMed  CAS  Google Scholar 

  32. Tacchini L, Dansi P, Matteucci E, Desiderio MA. Hepatocyte growth factor signaling stimulates hypoxia inducible factor-1 (HIF-1) activity in HepG2 hepatoma cells. Carcinogenesis 2001; 22:1363–71

    Article  PubMed  CAS  Google Scholar 

  33. Okano J, Shiota G, Matsumoto K, et al. Hepatocyte growth factor exerts a proliferative effect on oval cells through the PI3K/AKT signaling pathway. Biochem Biophysic Res Com 2003; 309:298–304

    Article  CAS  Google Scholar 

  34. Winbanks CE, Grimwood L, Gasser A, Darby IA, Hewitson TD, Becker GJ. Role of the phosphatidylinositol 3-kinase and mTOR pathways in the regulation of renal fibroblast function and differentiation. Int J Biochem Cell Biol 2007; 39:206–19

    Article  PubMed  CAS  Google Scholar 

  35. Giacco F, Perruolo G, D’Agostino E, et al. Thrombin-activated platelets induce proliferation of human skin fibroblasts by stimulating autocrine production of insulin-like growth factor-1. FASEB J 2006; 20:2402–4

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank Dr. D. Mori and K. Kai for the advice on immunohistochemical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kohji Miyazaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ide, T., Kitajima, Y., Miyoshi, A. et al. The Hypoxic Environment in Tumor-Stromal Cells Accelerates Pancreatic Cancer Progression via the Activation of Paracrine Hepatocyte Growth Factor/c-Met Signaling. Ann Surg Oncol 14, 2600–2607 (2007). https://doi.org/10.1245/s10434-007-9435-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-007-9435-3

Keywords

Navigation