1932

Abstract

Proteolytic enzymes are key signaling molecules in both normal physiological processes and various diseases. After synthesis, protease activity is tightly controlled. Consequently, levels of protease messenger RNA and protein often are not good indicators of total protease activity. To more accurately assign function to new proteases, investigators require methods that can be used to detect and quantify proteolysis. In this review, we describe basic principles, recent advances, and applications of biochemical methods to track protease activity, with an emphasis on the use of activity-based probes (ABPs) to detect protease activity. We describe ABP design principles and use case studies to illustrate the application of ABPs to protease enzymology, discovery and development of protease-targeted drugs, and detection and validation of proteases as biomarkers.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-060713-035352
2014-06-02
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/biochem/83/1/annurev-biochem-060713-035352.html?itemId=/content/journals/10.1146/annurev-biochem-060713-035352&mimeType=html&fmt=ahah

Literature Cited

  1. Rawlings ND, Barrett AJ, Bateman A. 1.  2012. MEROPS: the database of proteolytic enzymes, their substrates, and inhibitors. Nucleic Acids Res. 34:270–72 [Google Scholar]
  2. Turk B, Turk D, Turk V. 2.  2012. Protease signalling: the cutting edge. EMBO J. 31:1630–43 [Google Scholar]
  3. Barrett AJ, Rawlings ND, Woessner JF. 3.  1998. Handbook of Proteolytic Enzymes 1 London: Academic
  4. Turk B.4.  2006. Targeting proteases: successes, failures and future prospects. Nat. Rev. Drug Discov. 5:785–99 [Google Scholar]
  5. López-Otín C, Overall CM. 5.  2002. Protease degradomics: a new challenge for proteomics. Nat. Rev. Mol. Cell Biol. 3:509–19 [Google Scholar]
  6. Edgington LE, Verdoes M, Bogyo M. 6.  2011. Functional imaging of proteases: recent advances in the design and application of substrate-based and activity-based probes. Curr. Opin. Chem. Biol. 15:798–805 [Google Scholar]
  7. Fonović M, Bogyo M. 7.  2007. Activity based probes for proteases: applications to biomarker discovery, molecular imaging and drug screening. Curr. Pharm. Des. 13:253–61 [Google Scholar]
  8. Deu E, Verdoes M, Bogyo M. 8.  2012. New approaches for dissecting protease functions to improve probe development and drug discovery. Nat. Struct. Mol. Biol. 19:9–16 [Google Scholar]
  9. Turk V, Stoka V, Vasiljeva O, Renko M, Sun T. 9.  et al. 2012. Cysteine cathepsins: from structure, function and regulation to new frontiers. Biochim. Biophys. Acta 1824:68–88 [Google Scholar]
  10. Halfon S, Patel S, Vega F, Zurawski S, Zurawski G. 10.  1998. Autocatalytic activation of human legumain at aspartic acid residues. FEBS Lett. 438:114–18 [Google Scholar]
  11. Dix MM, Simon GM, Cravatt BF. 11.  2008. Global mapping of the topography and magnitude of proteolytic events in apoptosis. Cell 134:679–91 [Google Scholar]
  12. Crawford ED, Wells JA. 12.  2011. Caspase substrates and cellular remodeling. Annu. Rev. Biochem. 80:1055–86 [Google Scholar]
  13. Impens F, Colaert N, Helsens K, Ghesquière B, Timmerman E. 13.  et al. 2010. A quantitative proteomics design for systematic identification of protease cleavage events. Mol. Cell. Proteomics 9:2327–33 [Google Scholar]
  14. Kleifeld O, Doucet A, auf dem Keller U, Prudova A, Schilling O. 14.  et al. 2010. Isotopic labeling of terminal amines in complex samples identifies protein N-termini and protease cleavage products. Nat. Biotechnol. 28:281–88 [Google Scholar]
  15. Yoshihara HA, Mahrus S, Wells JA. 15.  2008. Tags for labeling protein N-termini with subtiligase for proteomics. Bioorgan. Med. Chem. Lett. 18:6000–3 [Google Scholar]
  16. Timmer JC, Enoksson M, Wildfang E, Zhu W, Igarashi Y. 16.  et al. 2007. Profiling constitutive proteolytic events in vivo. Biochem. J. 407:41–48 [Google Scholar]
  17. Pop C, Salvesen GS. 17.  2009. Human caspases: activation, specificity, and regulation. J. Biol. Chem. 284:21777–81 [Google Scholar]
  18. Gross A, Yin X-M, Wang K, Wei MC, Jockel J. 18.  et al. 1999. Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while BCL-XL prevents this release but not tumor necrosis factor R1/Fas death. J. Biol. Chem. 274:1156–63 [Google Scholar]
  19. Droga-Mazovec G, Bojič L, Petelin A, Ivanova S, Romih R. 19.  et al. 2008. Cysteine cathepsins trigger caspase-dependent cell death through cleavage of Bid and antiapoptotic Bcl-2 homologues. J. Biol. Chem. 283:19140–50 [Google Scholar]
  20. Crawford ED, Seaman JE, Agard N, Hsu GW, Julien O. 20.  et al. 2013. The DegraBase: a database of proteolysis in healthy and apoptotic human cells. Mol. Cell. Proteomics 12:813–24 [Google Scholar]
  21. Agard NJ, Mahrus S, Trinidad JC, Lynn A, Burlingame AL, Wells JA. 21.  2012. Global kinetic analysis of proteolysis via quantitative targeted proteomics. Proc. Natl. Acad. Sci. USA 109:1913–18 [Google Scholar]
  22. Agard NJ, Maltby D, Wells JA. 22.  2010. Inflammatory stimuli regulate caspase substrate profiles. Mol. Cell. Proteomics 9:880–93 [Google Scholar]
  23. Shimbo K, Hsu GW, Nguyen H, Mahrus S, Trinidad JC. 23.  et al. 2012. Quantitative profiling of caspase-cleaved substrates reveals different drug-induced and cell-type patterns in apoptosis. Proc. Natl. Acad. Sci. USA 109:12432–37 [Google Scholar]
  24. Villanueva J, Shaffer DR, Philip J, Chaparro CA, Erdjument-Bromage H. 24.  et al. 2006. Differential exoprotease activities confer tumor-specific serum peptidome patterns. J. Clin. Investig. 116:271–84 [Google Scholar]
  25. Petricoin EF, Ardekani AM, Hitt BA, Levine PJ, Fusaro VA. 25.  et al. 2002. Use of proteomic patterns in serum to identify ovarian cancer. Lancet 359:572–77 [Google Scholar]
  26. Koomen JM, Li D, Xiao L, Liu TC, Coombes KR. 26.  et al. 2005. Direct tandem mass spectrometry reveals limitations in protein profiling experiments for plasma biomarker discovery. J. Proteome Res. 4:972–81 [Google Scholar]
  27. Prudova A, auf dem Keller U, Butler GS, Overall CM. 27.  2010. Multiplex N-terminome analysis of MMP-2 and MPP-9 substrate degradomes by iTRAQ-TAILS quantitative proteomics. Mol. Cell. Proteomics 9:894–911 [Google Scholar]
  28. Poreba M, Drag M. 28.  2010. Current strategies for probing substrate specificity of proteases. Curr. Med. Chem. 17:3968–95 [Google Scholar]
  29. Harris JL, Backes BJ, Leonetti F, Mahrus S, Ellman JA, Craik CS. 29.  2000. Rapid and general profiling of protease specificity by using combinatorial fluorogenic substrate libraries. Proc. Natl. Acad. Sci. USA 97:7754–59 [Google Scholar]
  30. Otsuji T, Okuda-Ashitaka E, Kojima S, Akiyama H, Ito S, Ohmiya Y. 30.  2004. Monitoring for dynamic biological processing by intramolecular bioluminescence resonance energy transfer system using secreted luciferase. Anal. Biochem. 329:230–37 [Google Scholar]
  31. Kim GB, Kim KH, Park YH, Ko S, Kim Y-P. 31.  2013. Colorimetric assay of matrix metalloproteinase activity based on metal-induced self-assembly of carboxy gold nanoparticles. Biosens. Bioelectron. 41:833–39 [Google Scholar]
  32. Tyas L, Brophy VA, Pope A, Rivett AJ, Tavaré JM. 32.  2000. Rapid caspase-3 activation during apoptosis revealed using fluorescence-resonance energy transfer. EMBO Rep. 1:266–70 [Google Scholar]
  33. Fan H, Jiang X, Zhang T, Jin Q. 33.  2012. Peptide-induced fluorescence quenching of conjugated polyelectrolyte for label-free, ultrasensitive and selective assay of protease activity. Biosens. Bioelectron. 34:221–26 [Google Scholar]
  34. Mizukami S, Takikawa R, Sugihara F, Hori Y, Tochio H. 34.  et al. 2008. Paramagnetic relaxation-based 19F MRI probe to detect protease activity. J. Am. Chem. Soc. 130:794–95 [Google Scholar]
  35. Kwong GA, von Maltzahn G, Murugappan G, Abudayyeh O, Mo S. 35.  et al. 2013. Mass-encoded synthetic biomarkers for multiplexed urinary monitoring of disease. Nat. Biotechnol. 31:63–71 [Google Scholar]
  36. Puri AW, Broz P, Shen A, Monack DM, Bogyo M. 36.  2012. Caspase-1 activity is required to bypass macrophage apoptosis upon Salmonella infection. Nat. Chem. Biol. 8:745–47 [Google Scholar]
  37. Cravatt BF, Wright AT, Kozarich JW. 37.  2008. Activity-based protein profiling: from enzyme chemistry to proteomic chemistry. Annu. Rev. Biochem. 77:383–414 [Google Scholar]
  38. Saville B.38.  1967. The concept of hard and soft acids and bases as applied to multi-center chemical reactions. Angew. Chem. Int. Ed. Engl. 6:928–39 [Google Scholar]
  39. Powers JC, Asgian JL, Ekici OD, James KE. 39.  2002. Irreversible inhibitors of serine, cysteine, and threonine proteases. Chem. Rev. 102:4639–750 [Google Scholar]
  40. Kato D, Boatright KM, Berger AB, Nazif T, Blum G. 40.  et al. 2005. Activity-based probes that target diverse cysteine protease families. Nat. Chem. Biol. 1:33–38 [Google Scholar]
  41. Thornberry NA, Peterson EP, Zhao JJ, Howard AD, Griffin PR, Chapman KT. 41.  1994. Inactivation of interleukin-1β converting enzyme by peptide (acyloxy)methyl ketones. Biochemistry 33:3934–40 [Google Scholar]
  42. Uhlmann F, Wernic D, Poupart MA, Koonin EV, Nasmyth K. 42.  2000. Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast. Cell 103:375–86 [Google Scholar]
  43. Albrow VE, Ponder EL, Fasci D, Békés M, Deu E. 43.  et al. 2011. Development of small molecule inhibitors and probes of human SUMO deconjugating proteases. Chem. Biol. 18:722–32 [Google Scholar]
  44. Ekkebus R, van Kasteren SI, Kulathu Y, Scholten A, Berlin I. 44.  et al. 2013. On terminal alkynes that can react with active-site cysteine nucleophiles in proteases. J. Am. Chem. Soc. 135:2867–70 [Google Scholar]
  45. Yang Z, Fonović M, Verhelst SHL, Blum G, Bogyo M. 45.  2009. Evaluation of α,β-unsaturated ketone-based probes for papain-family cysteine proteases. Bioorgan. Med. Chem. 17:1071–78 [Google Scholar]
  46. Sexton KB, Kato D, Berger AB, Fonović M, Verhelst SHL, Bogyo M. 46.  2007. Specificity of aza-peptide electrophile activity–based probes of caspases. Cell Death Differ. 14:727–32 [Google Scholar]
  47. Saghatelian A, Jessani N, Joseph A, Humphrey M, Cravatt BF. 47.  2004. Activity-based probes for the proteomic profiling of metalloproteases. Proc. Natl. Acad. Sci. USA 101:10000–5 [Google Scholar]
  48. Chau DM, Crump CJ, Villa JC, Scheinberg DA, Li YM. 48.  2012. Familial Alzheimer disease presenilin-1 mutations alter the active site conformation of γ-secretase. J. Biol. Chem. 287:17288–96 [Google Scholar]
  49. Chan EWS, Chattopadhaya S, Panicker RC, Huang X, Yao SQ. 49.  2004. Developing photoactive affinity probes for proteomic profiling: hydroxamate-based probes for metalloproteases. J. Am. Chem. Soc. 126:14435–46 [Google Scholar]
  50. Weihofen A, Binns K, Lemberg MK, Ashman K, Martoglio B. 50.  2002. Identification of signal peptide peptidase, a presenilin-type aspartic protease. Science 296:2215–18 [Google Scholar]
  51. Falgueyret J-P, Black WC, Cromlish W, Desmarais S, Lamontagne S. 51.  et al. 2004. An activity-based probe for the determination of cysteine cathepsin protease activities in whole cells. Anal. Biochem. 335:218–27 [Google Scholar]
  52. Abuelyaman AS, Hudig D, Woodard SL, Powers JC. 52.  1994. Fluorescent derivatives of diphenyl [1-(n-peptidylamino)alkyl]phosphonate esters: synthesis and use in the inhibition and cellular localization of serine proteases. Bioconjug. Chem. 5:400–5 [Google Scholar]
  53. Mahrus S, Craik CS. 53.  2005. Selective chemical functional probes of granzymes A and B reveal granzyme B is a major effector of natural killer cell–mediated lysis of target cells. Chem. Biol. 12:567–77 [Google Scholar]
  54. Serim S, Mayer SV, Verhelst SHL. 54.  2013. Tuning activity–based probe selectivity for serine proteases by on-resin “click” construction of peptide diphenyl phosphonates. Org. Biomol. Chem. 11:5714–21 [Google Scholar]
  55. Verdoes M, Hillaert U, Florea BI, Sae-Heng M, Risseeuw MDP. 55.  et al. 2007. Acetylene functionalized BODIPY dyes and their application in the synthesis of activity based proteasome probes. Bioorgan. Med. Chem. Lett. 17:6169–71 [Google Scholar]
  56. Greenbaum D, Medzihradszky KF, Burlingame A, Bogyo M. 56.  2000. Epoxide electrophiles as activity-dependent cysteine protease profiling and discovery tools. Chem. Biol. 7:569–81 [Google Scholar]
  57. Jo H, Meinhardt N, Wu Y, Kulkarni S, Hu X. 57.  et al. 2012. Development of α-helical calpain probes by mimicking a natural protein–protein interaction. J. Am. Chem. Soc. 134:17704–13 [Google Scholar]
  58. Patricelli MP, Giang DK, Stamp LM, Burbaum JJ. 58.  2001. Direct visualization of serine hydrolase activities in complex proteomes using fluorescent active site-directed probes. Proteomics 1:1067–71 [Google Scholar]
  59. Rhoads ML, Fetterer RH. 59.  1995. Regulated secretion of cathepsin L–like cysteine proteases by Haemonchus contortus. J. Parasitol. 81:505–12 [Google Scholar]
  60. Bedner E, Smolewski P, Amstad P, Darzynkiewicz Z. 60.  2000. Activation of caspases measured in situ by binding of fluorochrome-labeled inhibitors of caspases (FLICA): correlation with DNA fragmentation. Exp. Cell Res. 259:308–13 [Google Scholar]
  61. Dobrotă C, Fasci D, Hădade ND, Roiban GD, Pop C. 61.  et al. 2012. Glycine fluoromethylketones as SENP-specific activity based probes. ChemBioChem 13:80–84 [Google Scholar]
  62. Deu E, Leyva MJ, Albrow VE, Rice MJ, Ellman JA, Bogyo M. 62.  2010. Functional studies of Plasmodium falciparum dipeptidyl aminopeptidase I using small molecule inhibitors and active site probes. Chem. Biol. 17:808–19 [Google Scholar]
  63. Wang G, Mahesh U, Chen GYJ, Yao SQ. 63.  2003. Solid-phase synthesis of peptide vinyl sulfones as potential inhibitors and activity-based probes of cysteine proteases. Org. Lett. 5:737–40 [Google Scholar]
  64. Borodovsky A, Ovaa H, Meester WJ, Venanzi ES, Bogyo MS. 64.  et al. 2005. Small-molecule inhibitors and probes for ubiquitin- and ubiquitin-like-specific proteases. ChemBioChem 6:287–91 [Google Scholar]
  65. Bogyo M, McMaster J, Gaczynska M, Tortorella D, Goldberg A, Ploegh HL. 65.  1997. Covalent modification of the active site threonine of proteasomal β subunits and the Escherichia coli homolog HslV by a new class of inhibitors. Proc. Natl. Acad. Sci. USA 94:6629–34 [Google Scholar]
  66. Arastu-Kapur S, Ponder EL, Fonović UP, Yeoh S, Yuan F. 66.  et al. 2008. Identification of proteases that regulate erythrocyte rupture by the malaria parasite Plasmodium falciparum. Nat. Chem. Biol. 4:203–13 [Google Scholar]
  67. Vosyka O, Vinothkumar KR, Wolf EV, Brouwer AJ, Liskamp RMJ, Verhelst SHL. 67.  2012. Activity-based probes for rhomboid proteases discovered in a mass spectrometry–based assay. Proc. Natl. Acad. Sci. USA 110:2472–77 [Google Scholar]
  68. Darzynkiewicz Z, Pozarowski P. 68.  2007. All that glitters is not gold: All that FLICA binds is not caspase. A caution in data interpretation—and new opportunities. Cytometry A 71:536–37 [Google Scholar]
  69. Geurink PP, Prely LM, Van Der Marel GA, Bischoff R, Overkleeft HS. 69.  2012. Photoaffinity labeling in activity-based protein profiling. Top. Curr. Chem. 324:85–113 [Google Scholar]
  70. Keow JY, Pond ED, Cisar JS, Cravatt BF, Crawford BD. 70.  2012. Activity-based labeling of matrix metalloproteinases in living vertebrate embryos. PLoS ONE 7:e43434 [Google Scholar]
  71. Chun J, Yin YI, Yang G, Tarassishin L, Li Y, Hart C. 71.  2004. Stereoselective synthesis of photoreactive peptidomimetic γ-secretase inhibitors. J. Org. Chem. 6:7344–47 [Google Scholar]
  72. Borodovsky A, Ovaa H, Kolli N, Gan-Erdene T, Wilkinson KD. 72.  et al. 2002. Chemistry-based functional proteomics reveals novel members of the deubiquitinating enzyme family. Chem. Biol. 9:1149–59 [Google Scholar]
  73. Martin EJ, Blaney JM, Siani MA, Spellmeyer DC, Wong AK, Moos WH. 73.  1995. Measuring diversity: experimental design of combinatorial libraries for drug discovery. J. Med. Chem. 38:1431–36 [Google Scholar]
  74. Kasperkiewicz P, Gajda AD, Drąg M. 74.  2012. Current and prospective applications of non-proteinogenic amino acids in profiling of proteases substrate specificity. Biol. Chem. 393:843–51 [Google Scholar]
  75. Vickers CJ, González-Páez GE, Wolan DW. 75.  2013. Selective detection of caspase-3 versus caspase-7 using activity-based probes with key unnatural amino acids. Am. Chem. Soc. Chem. Biol. 8:1558–66 [Google Scholar]
  76. Heinis C, Rutherford T, Freund S, Winter G. 76.  2009. Phage-encoded combinatorial chemical libraries based on bicyclic peptides. Nat. Chem. Biol. 5:502–7 [Google Scholar]
  77. Baeriswyl V, Calzavarini S, Gerschheimer C, Diderich P, Angelillo-Scherrer A, Heinis C. 77.  2013. Development of a selective peptide macrocycle inhibitor of coagulation factor XII toward the generation of a safe antithrombotic therapy. J. Med. Chem. 56:3742–46 [Google Scholar]
  78. Pollaro L, Diderich P, Angelini A, Bellotto S, Wegner H, Heinis C. 78.  2012. Measuring net protease activities in biological samples using selective peptidic inhibitors. Anal. Biochem. 427:18–20 [Google Scholar]
  79. Morell M, Nguyen Duc T, Willis AL, Syed S, Lee J. 79.  et al. 2013. Coupling protein engineering with probe design to inhibit and image matrix metalloproteinases with controlled specificity. J. Am. Chem. Soc. 135:9139–48 [Google Scholar]
  80. Xiao J, Broz P, Puri AW, Deu E, Morell M. 80.  et al. 2013. A coupled protein and probe engineering approach for selective inhibition and activity-based probe labeling of the caspases. J. Am. Chem. Soc. 135:9130–38 [Google Scholar]
  81. Edgington LE, Verdoes M, Ortega A, Withana NP, Lee J. 81.  et al. 2013. Functional imaging of legumain in cancer using a new quenched activity-based probe. J. Am. Chem. Soc. 135:174–82 [Google Scholar]
  82. van Kampen JJ, Burgers PC, de Groot R, Gruters RA, Luider TM. 82.  2011. Biomedical application of MALDI mass spectrometry for small-molecule analysis. Mass Spectrom. Rev. 30:101–20 [Google Scholar]
  83. Blum G, von Degenfeld G, Merchant MJ, Blau HM, Bogyo M. 83.  2007. Noninvasive optical imaging of cysteine protease activity using fluorescently quenched activity-based probes. Nat. Chem. Biol. 3:668–77 [Google Scholar]
  84. Kaplan HM, Hastings LP. 84.  1947. The clinical use of fluorescein. Conn. State Med. J. 4:254–57 [Google Scholar]
  85. Witte MD, Walvoort MT, Li KY, Kallemeijn WW, Donker-Koopman WE. 85.  et al. 2011. Activity-based profiling of retaining β-glucosidases: a comparative study. ChemBioChem 12:1263–69 [Google Scholar]
  86. Patricelli MP, Giang DK, Stamp LM, Burbaum JJ. 86.  2001. Direct visualization of serine hydrolase activities in complex proteomes using fluorescent active site–directed probes. Proteomics 1:1067–71 [Google Scholar]
  87. Berkers CR, Verdoes M, Lichtman E, Fiebiger E, Kessler BM. 87.  et al. 2005. Activity probe for in vivo profiling of the specificity of proteasome inhibitor bortezomib. Nat. Methods 2:357–62 [Google Scholar]
  88. Schmidinger H, Birner-Gruenberger R, Riesenhuber G, Saf R, Susani-Etzerodt H, Hermetter A. 88.  2005. Novel fluorescent phosphonic acid esters for discrimination of lipases and esterases. ChemBioChem 6:1776–81 [Google Scholar]
  89. Flack JR, Krieger M, Goldstein JL, Brown MS. 89.  1981. Preparation and spectral properties of lipophilic fluorescein derivatives: application to plasma low-density lipoprotein. J. Am. Chem. Soc. 103:7396–98 [Google Scholar]
  90. Verdoes M, Oresic-Bender K, Segal E, van der Linden WA, Syed S. 90.  et al. 2013. An improved quenched fluorescent probe for imaging of cysteine cathepsin activity. J. Am. Chem. Soc. 135:14726–30 [Google Scholar]
  91. Kolb HC, Finn MG, Sharpless KB. 91.  2001. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. Engl. 40:2004–21 [Google Scholar]
  92. Barglow KT, Cravatt BF. 92.  2007. Activity-based protein profiling for the functional annotation of enzymes. Nat. Methods 4:822–27 [Google Scholar]
  93. Brummel KE.93.  2002. Thrombin functions during tissue factor–induced blood coagulation. Blood 100:148–52 [Google Scholar]
  94. Dickinson CD, Kelly CR, Ruf W. 94.  1996. Identification of surface residues mediating tissue factor binding and catalytic function of the serine protease factor VIIa. Proc. Natl. Acad. Sci. USA 93:14379–84 [Google Scholar]
  95. Sherratt AR, Blais DR, Ghasriani H, Pezacki JP, Goto NK. 95.  2012. Activity-based protein profiling of the Escherichia coli GlpG rhomboid protein delineates the catalytic core. Biochemistry 51:7794–803 [Google Scholar]
  96. Berger AB, Witte MD, Denault J-B, Sadaghiani AM, Sexton KB. 96.  et al. 2006. Identification of early intermediates of caspase activation using selective inhibitors and activity-based probes. Mol. Cell 23:509–21 [Google Scholar]
  97. Shen A, Lupardus PJ, Gersch MM, Puri AW, Albrow VE. 97.  et al. 2011. Defining an allosteric circuit in the cysteine protease domain of Clostridium difficile toxins. Nat. Struct. Mol. Biol. 18:364–72 [Google Scholar]
  98. Thomsen ND, Koerber JT, Wells JA. 98.  2013. Structural snapshots reveal distinct mechanisms of procaspase-3 and -7 activation. Proc. Natl. Acad. Sci. USA 110:8477–82 [Google Scholar]
  99. Voth DE, Ballard JD. 99.  2005. Clostridium difficile toxins: mechanism of action and role in disease. Clin. Microbiol. Rev. 18:247–63 [Google Scholar]
  100. Rupnik M, Pabst S, Rupnik M, von Eichel–Streiber C, Urlaub H, Söling HD. 100.  2005. Characterization of the cleavage site and function of resulting cleavage fragments after limited proteolysis of Clostridium difficile toxin B (TcdB) by host cells. Microbiology 151:199–208 [Google Scholar]
  101. Lupardus PJ, Shen A, Bogyo M, Garcia KC. 101.  2008. Small molecule–induced allosteric activation of Vibrio cholerae RTX cysteine protease domain. Science 322:265–68 [Google Scholar]
  102. Vinothkumar KR.102.  2011. Structure of rhomboid protease in a lipid environment. J. Mol. Biol. 407:232–47 [Google Scholar]
  103. Bachovchin DA, Brown SJ, Rosen H, Cravatt BF. 103.  2009. Substrate-free high-throughput screening identifies selective inhibitors for uncharacterized enzymes. Nat. Biotechnol. 27:387–94 [Google Scholar]
  104. Lone AM, Bachovchin DA, Westwood D, Speers AE, Spicer TP. 104.  et al. 2012. A substrate-free activity-based protein profiling screen for the discovery of selective PREPL inhibitors. J. Am. Chem. Soc. 133:11665–74 [Google Scholar]
  105. Knuckley B, Jones JE, Bachovchin DA, Slack J, Causey CP. 105.  et al. 2010. A fluopol-ABPP HTS assay to identify PAD inhibitors. Chem. Commun. 46:7175–77 [Google Scholar]
  106. Kirby JM, Ahern H, Roberts AK, Kumar V, Freeman Z. 106.  et al. 2009. Cwp84, a surface-associated cysteine protease, plays a role in the maturation of the surface layer of Clostridium difficile. J. Biol. Chem. 284:34666–73 [Google Scholar]
  107. Barrett AJ, Kembhavi AA, Hanada K. 107.  1981. E-64 [L-trans-epoxysuccinyl-leucyl-amido(4-guanidino)butane] and related epoxides as inhibitors of cysteine proteinases. Acta Biol. Med. Ger. 40:1513–17 [Google Scholar]
  108. Baker N, de Koning HP, Mäser P, Horn D. 108.  2013. Drug resistance in African trypanosomiasis: the melarsoprol and pentamidine story. Trends Parasitol. 29:110–18 [Google Scholar]
  109. Stevens JR, Noyes HA, Dover GA, Gibson WC. 109.  1999. The ancient and divergent origins of the human pathogenic trypanosomes, Trypanosoma brucei and T. cruzi. Parasitology 118:107–16 [Google Scholar]
  110. Yang PY, Wang M, Li L, Wu H, He CY, Yao SQ. 110.  2012. Design, synthesis and biological evaluation of potent azadipeptide nitrile inhibitors and activity-based probes as promising anti–Trypanosoma brucei agents. Chem. Eur. J. 18:6528–41 [Google Scholar]
  111. Saftig P, Hunziker E, Wehmeyer O, Jones S, Boyde A. 111.  et al. 1998. Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice generation of mice. Proc. Natl. Acad. Sci. USA 95:13453–58 [Google Scholar]
  112. Deaton DN, Tavares FX. 112.  2005. Design of cathepsin K inhibitors for osteoporosis. Curr. Top. Med. Chem. 5:1639–75 [Google Scholar]
  113. Desmarais S, Black WC, Oballa R, Lamontagne S, Riendeau D. 113.  et al. 2008. Effect of cathepsin K inhibitor basicity on in vivo off-target activities. Mol. Pharmacol. 73:147–56 [Google Scholar]
  114. Pejler G, Rönnberg E, Waern I, Wernersson S. 114.  2010. Mast cell proteases: multifaceted regulators of inflammatory disease. Blood 115:4981–90 [Google Scholar]
  115. Hanahan D, Weinberg RA. 115.  2011. Hallmarks of cancer: the next generation. Cell 144:646–74 [Google Scholar]
  116. Jessani N, Liu Y, Humphrey M, Cravatt BF. 116.  2002. Enzyme activity profiles of the secreted and membrane proteome that depict cancer cell invasiveness. Proc. Natl. Acad. Sci. USA 99:10335–40 [Google Scholar]
  117. Cutter JL, Cohen NT, Wang J, Sloan AE, Cohen AR. 117.  et al. 2012. Topical application of activity-based probes for visualization of brain tumor tissue. PLoS ONE 7:e33060 [Google Scholar]
  118. Veilleux A, Black WC, Gauthier JY, Mellon C, Percival MD. 118.  et al. 2011. Probing cathepsin S activity in whole blood by the activity-based probe BIL-DMK: cellular distribution in human leukocyte populations and evidence of diurnal modulation. Anal. Biochem. 411:43–49 [Google Scholar]
  119. Jessani N, Liu Y, Humphrey M, Cravatt BF. 119.  2002. Enzyme activity profiles of the secreted and membrane proteome that depict cancer cell invasiveness. Proc. Natl. Acad. Sci. USA 99:10335–40 [Google Scholar]
  120. Wiedl T, Arni S, Roschitzki B, Grossmann J, Collaud S. 120.  et al. 2011. Activity-based proteomics: identification of ABHD11 and ESD activities as potential biomarkers for human lung adenocarcinoma. J. Proteomics 74:1884–94 [Google Scholar]
  121. Wiedl T, Collaud S, Hillinger S, Arni S, Burgess C. 121.  et al. 2012. KRAS mutation is associated with elevated myeloblastin activity in human lung adenocarcinoma. Cancer Genomics Proteomics 9:51–54 [Google Scholar]
  122. Patterson AW, Wood WJL, Hornsby M, Lesley S, Spraggon G, Ellman JA. 122.  2006. Identification of selective, nonpeptidic nitrile inhibitors of cathepsin S using the substrate activity screening method. J. Med. Chem. 49:6298–307 [Google Scholar]
  123. Verdoes M, Edgington LE, Scheeren FA, Leyva M, Blum G. 123.  et al. 2012. A nonpeptidic cathepsin S activity–based probe for noninvasive optical imaging of tumor-associated macrophages. Chem. Biol. 19:619–28 [Google Scholar]
  124. Diamandis EP, Yousef GM, Soosaipillai AR, Grass L, Porter A. 124.  et al. 2000. Immunofluorometric assay of human kallikrein 6 and preliminary clinical applications. Clin. Biochem. 33:369–75 [Google Scholar]
  125. Oikonomopoulou K, Hansen KK, Baruch A, Hollenberg MD, Diamandis EP. 125.  2008. Immunofluorometric activity–based probe analysis of active KLK6 in biological fluids. Biol. Chem. 389:747–56 [Google Scholar]
/content/journals/10.1146/annurev-biochem-060713-035352
Loading
/content/journals/10.1146/annurev-biochem-060713-035352
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error