Skip to main content
Log in

PET Contributions to Understanding Normal and Abnormal Cardiac Perfusion and Metabolism

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Noninvasive positron emission tomography (PET)-based studies of myocardial blood flow and substrate metabolism characterized the human heart as an organ fully integrated with the general function of the human body. Cardiac energy demands are tightly coupled to peripheral needs in oxygen and, in turn, govern changes in myocardial blood flow and substrate supply. Substrate selection and utilization depend largely on substrate availability and, hence, on concentrations of fuel substrate in blood. Endocrine and neuronal factors together with regional transport processes modulate and fine tune regional rates of substrate utilization. Manipulation of substrate availability as for example through dietary or pharmacologic maneuvers offer a means to probe regional substrate interactions, to demonstrate shifts in substrate selection between free fatty acid and glucose and, hence, to confirm the operation of regulatory mechanisms established previously in animal experiments. In abnormal states, local factors modulate the generally integrated responses and synchronize regional substrate utilization and metabolism with regional needs. Diminished substrate delivery in chronic low flow conditions is matched by a down regulation in regional contractile function possibly as an energy saving measure, together with a decline in oxidative metabolism as evidenced by reduced oxidation of 11C-palmitate and delayed turnover of 11C-acetate. Activation of rate controlling enzymes together with enhanced transmembraneous transport systems represent flux generating steps for enhanced regional glucose consumption possibly as a means for reducing oxygen needs and at the same time, preserving cellular homeostasis. PET identifies such regional metabolic adjustments as regional increases in 18F-deoxyglucose uptake as a clinically useful hallmark of myocardial viability. Regional glucose utilization in this case no longer fully responds to general control mechanisms of substrate selection but is modified by local factors or, ultimately may become part of a local microsystem as a means of protection against potentially deleterious consequences of disease. © 2000 Biomedical Engineering Society.

PAC00: 8758Fg, 8719Hh, 8719Uv, 8716Uv, 8715Rn

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Araujo, L., A. Lammertsma, C. Rhodes, E. McFalls, H. Iida, E. Rechavia, A. Galassi, R. De Silva, T. Jones, and A. Ma-seri. Noninvasive quantification of regional myocardial blood flow in coronary artery disease with oxygen-15-labeled car-bon dioxide inhalation and positron emission tomography. Circulation 83:875–885, 1991.

    Google Scholar 

  2. Ausma, J., F. Thonae, G. D. Dispersyn, W. Flameng, J. L. Vanoverschelde, F. C. Ramaekers, and M. Borgers. Dediffer-entiated cardiomyocytes from chronic hibernating myocar-dium are ischemiatolerant. Mol. Cell. Biochem. 186:159–168, 1998.

    Google Scholar 

  3. Ballard, F., W. Danforth, S. Nagele, and R. Bing. Myocardial metabolism of fatty acids. J. Clin. Invest. 39:717–723, 1960.

    Google Scholar 

  4. Beanlands, R. S., P. J. Hendry, R. G. Masters, R. A. de-Kemp, K. Woodend, and T. D. Ruddy. Delay in revascular-ization is associated with increased mortality rate in patients with severe left ventricular dysfunction and viable myocar-dium on fluorine 18-fluorodeoxyglucose positron emission tomography imaging. Circulation 98:II51–II56, 1998.

    Google Scholar 

  5. Bergmann, S., M. Shelton, C. Weinheimer, and P. Herrero. Accuracy of quantitative estimates of myocardial blood flow with rubidium-82 and positron emission tomography. J. Nucl. Med. 30:807, 1989.

    Google Scholar 

  6. Bing, R. J. The metabolism of the heart. Harvey Lectures:27–70, 1954/1955.

  7. Brown, M. A., D. W. Myears, and S. R. Bergmann. Validity of estimates of myocardial oxidative metabolism with carbon-11 acetate and positron emission tomography despite altered patterns of substrate utilization. J. Nucl. Med. 30:187–193, 1989.

    Google Scholar 

  8. Chen, C., M. Lijie, D. Linfert, T. Lai, J. Fallon, L. Gillam, D. Waters, and G. Tsongalis. Myocardial cell death and apop-tosis in hibernating myocardium. J. Am. Coll. Cardiol. 30:1407–1412, 1997.

    Google Scholar 

  9. Czernin, J., P. Mu¨ ller, S. Chan, R. Brunken, G. Porenta, J. Krivokapich, K. Chen, A. Chan, M. Phelps, and H. Schelbert. Influence of age and hemodynamics on myocardial blood flow and flow reserve. Circulation 88:62–69, 1993.

    Google Scholar 

  10. Czernin, J., and H. R. Schelbert. Non-invasive quantification of myocardial blood flow and flow reserve using dynamic positron emission tomography. Wiener Klinische Wochen-schrift 106:478–486, 1994.

    Google Scholar 

  11. Depre´, C., J.-L. J. Vanoverschelde, J. Melin, M. Borgers, A. Bol, J. Ausma, R. Dion, and W. Wijns. Structural and meta-bolic correlates of the reversibility of chronic left ventricular ischemic dysfunction in humans. Am. J. Physiol. 268:H1265–H1275, 1995.

    Google Scholar 

  12. Elsa¨sser, A., M. Schlepper, W. P. Kleovekorn, W. J. Cai, R. Zimmermann, K. D. Meuller, R. Strasser, S. Kostin, C. Ga-gel, B. Meunkel, W. Schaper, and J. Schaper. Hibernating myocardium: an incomplete adaptation to ischemia. Circula-tion 96:2920–2931, 1997.

    Google Scholar 

  13. Elsasser, A., M. Schlepper, R. Zimmermann, K. D. Meuller, R. Strasser, W. P. Kleovekorn, and J. Schaper. The extracel-lular matrix in hibernating myocardium-a significant factor causing structural defects and cardiac dysfunction. Mol. Cell. Biochem. 186:147–158, 1998.

    Google Scholar 

  14. Feigl, E., G. Neat, and A. Huang. Interrelations between coronary artery pressure, myocardial metabolism and coro-nary blood flow. J. Mol. Cell. Cardiol. 22:375–390, 1990.

    Google Scholar 

  15. Flameng, W., R. Suy, F. Schwarz, M. Borgers, J. Piessens, F. Thone, H. Van Ermen, and H. De Geest. Ultrastructural cor-relates of left ventricular contraction abnormalities in patients with chronic ischemic heart disease: determinants of revers-ible segmental asynergy post-revascularization surgery. Am. Heart J. 102:846–857, 1981.

    Google Scholar 

  16. Flameng, W. J., B. Shivalkar, B. Spiessens, A. Maes, J. Nuyts, J. VanHaecke, and L. Mortelmans. PET scan predicts recovery of left ventricular function after coronary artery bypass operation. Ann. of Thoracic Surg. 64:1694–701, 1997.

    Google Scholar 

  17. Fragasso, G., S. Chierchia, G. Lucignani, C. Landoni, A. Conversano, M. Gilardi, F. Colombo, C. Rossetti, and F. Fazio. Time dependence of residual tissue viability after myocardial infarction assessed by [18F] fluorodeoxyglucose and positron emission tomography. Am. J. Cardiol. 72:131G–139G, 1993.

    Google Scholar 

  18. Holmberg, S., W. Serzysko, and E. Varnauskas. Coronary circulation during heavy exercise in control subjects and pa-tients with coronary heart disease. Acta Med. Scand., Suppl. 190:465–480, 1971.

    Google Scholar 

  19. Hutchins, G., M. Schwaiger, K. Rosenspire, J. Krivokapich, H. Schelbert, and D. Kuhl. Noninvasive quantification of regional blood flow in the human heart using N-13 ammonia and dynamic positron emission tomographic imaging. J. Am. Coll. Cardiol. 15:1032–1042, 1990.

    Google Scholar 

  20. Keul, J., E. Doll, H. Steim, H. Homburger, H. Kern, and H. Reindell. Uber den Stoffwechsel des menschlichen Herzens. I. Substratversorgung des gesunden Herzens in Ruhe, wa¨hr-end und nach ko¨ rperlicher Arbeit. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 282:1–27, 1965.

    Google Scholar 

  21. Krivokapich, J., S. Huang, and H. Schelbert. Response of absolute myocardial blood flow to dobutamine assessed with nitrogen-13 ammonia and dynamic positron emission tomog-raphy. J. Am. Coll. Cardiol. 17:379A, 1991.

    Google Scholar 

  22. Krivokapich, J., S. C. Huang, and H. R. Schelbert. Assess-ment of the effects of dobutamine on myocardial blood flow and oxidative metabolism in normal human subjects using nitrogen-13 ammonia and carbon-11 acetate. Am. J. Cardiol. 71:1351–1356, 1993.

    Google Scholar 

  23. Krivokapich, J., G. T. Smith, S. C. Huang, E. J. Hoffman, O. Ratib, M. E. Phelps, and H. R. Schelbert. N-13 ammonia myocardial imaging at rest and with exercise in normal vol-unteers: Quantification of absolute myocardial perfusion with dynamic positron emission tomography. Circulation 80:1328–1337, 1989.

    Google Scholar 

  24. Lim, H., J. A. Fallavollita, R. Hard, C. W. Kerr, and J. M. Canty, Jr. Profound apoptosis-mediated regional myocyte loss and compensatory hypertrophy in pigs with hibernating myocardium. Circulation 100:2380–2386, 1999.

    Google Scholar 

  25. Lopaschuk, G., and W. Stanley. Glucose metabolism in the ischemic heart. Circulation 95:313–315, 1997.

    Google Scholar 

  26. Maes, A., W. Flameng, J. Nuyts, M. Borgers, B. Shivalkar, J. Ausma, G. Bormans, C. Schiepers, M. De Roo, and L. Mor-telmans. Histological alterations in chronically hypoperfused myocardium. Correlation with PET findings. Circulation 90:735–745, 1994.

    Google Scholar 

  27. Ng, C. K., S. C. Huang, H. R. Schelbert, and D. B. Buxton. Validation of a model for 1-11C acetate as a tracer of cardiac oxidative metabolism. Am. J. Physiol. 266:H1304–H1315, 1994.

    Google Scholar 

  28. Nuutila, P., V. A. Koivisto, J. Knuuti, U. Ruotsalainen, M. Tereas, M. Haaparanta, J. Bergman, O. Solin, L. M. Voipio– Pulkki, U. Wegelius, and et al. Glucose-free fatty acid cycle operates in human heart and skeletal muscle in vivo. J. Clin. Invest. 89:1767–1774, 1992.

    Google Scholar 

  29. Opie, L. H. The Heart-Physiology and Metabolism. New York: Raven Press, 1991.

    Google Scholar 

  30. Pagano, D., J. N. Townend, W. A. Littler, R. Horton, P. G. Camici, and R. S. Bonser. Coronary artery bypass surgery as treatment for ischemic heart failure: the predictive value of viability assessment with quantitative positron emission to-mography for symptomatic and functional outcome. J. Tho-rac. Cardiovasc. Surg. 115:791–799, 1998.

    Google Scholar 

  31. Phelps, M. E., E. J. Hoffman, C. E. Selin, S. C. Huang, G. Robinson, N. MacDonald, H. Schelbert, and D. E. Kuhl. Investigation of [18F]2-fluoro-2-deoxyglucose for the mea-sure of myocardial glucose metabolism. J. Nucl. Med. 19:1311–1319, 1978.

    Google Scholar 

  32. Rahimtoola, S. H. The hibernating myocardium. Am. Heart J. 117:211–221, 1989.

    Google Scholar 

  33. Randle, P. J., and P. K. Tubbs. Carbohydrate and fatty acid metabolism. In: Handbook of Physiology, Section 2: The Cardiovascular System, edited by R. M. Berne, N. Sperelakis, and S. R. Geiger. Bethesda: The American Physiological Society, 1979 pp. 805–844.

    Google Scholar 

  34. Rubin, P. J., D. S. Lee, V. G. Daavila-Romaan, E. M. Gelt-man, K. B. Schechtman, S. R. Bergmann, and R. J. Gropler. Superiority of C-11 acetate compared with F-18 fluorodeoxy-glucose in predicting myocardial functional recovery by pos-itron emission tomography in patients with acute myocardial infarction. Am. J. Cardiol. 78:1230–1235, 1996.

    Google Scholar 

  35. Schelbert, H. R., E. Henze, H. Sochor, R. G. Grossman, S. C. Huang, J. R. Barrio, M. Schwaiger, and M. E. Phelps. Effects of substrate availability on myocardial C-11 palmitate kinet-ics by positron emission tomography in normal subjects and patients with ventricular dysfunction. Am. Heart J. 111:1055–1064, 1986.

    Google Scholar 

  36. Scho¨ der, H., R. Campisi, T. Ohtake, D. Moon, C. Hoh, J. Czernin, and H. Schelbert. Blood Flow-Metabolism Imaging with Positron Emission Tomography in Patients with Diabe-tes Mellitus for the Assessment of Reversible left Ventricular Contractile Dysfunction. J. Am. Coll. Cardiol. 33:1328–1337, 1999.

    Google Scholar 

  37. Schwaiger, M., D. Sun, G. Deeb, N. Nguyen, F. Haas, F. Sebening, and B. FC. Expression of myocardial glucose transporter (GLUT) mRNAs in patients with advanced coro-nary artery disease (CAD). Circulation 90:I–113, 1994.

    Google Scholar 

  38. Schwarz, E., F. Schoendube, S. Kostin, N. Schmiedtke, G. Schulz, U. Buell, B. Messmer, J. Morrison, P. Hanrath, and J. vom Dahl. Prolonged myocardial hibernation exacerbates car-diomyocyte degeneration and impairs recovery of function after revascularization. J. Am. Coll. Cardiol. 31:1018–1026, 1998.

    Google Scholar 

  39. Schwarz, E. R., J. Schaper, J. vom Dahl, C. Altehoefer, B. Grohmann, F. Schoendube, F. H. Sheehan, R. Uebis, U. Buell, B. J. Messmer, W. Schaper, and P. Hanrath. Myocyte degeneration and cell death in hibernating human myocar-dium. J. Am. Coll. Cardiol. 27:1577–1585, 1996.

    Google Scholar 

  40. Sun, K., K. Chen, S.-C. Huang, D. Buxton, H. Hansen, A. Kim, S. Siegel, Y. Choi, P. Mu¨ ller, M. Phelps, and H. Schel-bert. Compartment model for measuring myocardial oxygen consumption using [1-11 C] acetate. J. Nucl. Med. 38:459–466, 1997.

    Google Scholar 

  41. Sun, K., J. Czernin, J. Krivokapich, M. Bottcher, Y. K. Lau, M. Chen, G. Maurer, and H. R. Schelbert. Wall motion and flow response to low dose dobutamine in apparently normal myocardium of multivessel CAD patients. J. Nucl. Med.:35, 1994.

  42. Tillisch, J., R. Brunken, R. Marshall, M. Schwaiger, M. Man-delkern, M. Phelps, and H. R. Schelbert. Reversibility of cardiac wall motion abnormalities predicted by positron to-mography. N. Engl. J. Med. 314:884–888, 1986.

    Google Scholar 

  43. Young, L., Y. Renfu, R. Russell, X. Hu, M. Caplan, J. Ren, G. Shulman, and A. Sinusas. Low-flow ischemia leads to translocation of canine heart GLUT-4 and GLUT-1 glucose transporters to the sarcolemma in vivo. Circulation 95:415–422, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schelbert, H.R. PET Contributions to Understanding Normal and Abnormal Cardiac Perfusion and Metabolism. Annals of Biomedical Engineering 28, 922–929 (2000). https://doi.org/10.1114/1.1310216

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.1310216

Navigation