Skip to main content

Advertisement

Log in

Imaging glial cell activation with [11C]-R-PK11195 in patients with AIDS

  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

Glial cell activation occurs in response to brain injury and is present in a wide variety of inflammatory processes including dementia associated with human immunodeficiency virus (HIV). HIV-infected glial cells release cytokines and chemokines that, along with viral neurotoxins, contribute to neuronal damage and apoptosis. The purpose of this study was to determine if glial cell activation in HIV-positive (HIV+) patients could be detected noninvasively, in vivo, using [11C]-R-PK11195 with positron emission tomography (PET). [11C]-R-PK11195 is a selective radioligand for the peripheral benzodiazepine receptor (PBR), and is known to reflect the extent of glial cell activation. A subaim was to determine if nondemented HIV+ patients could be distinguished from those with HIV-associated dementia (HAD) on the basis of [11C]-R-PK11195 binding. Five healthy volunteers and 10 HIV+ patients underwent PET with [11C]-R-PK11195. Time-radioactivity curves (TACs) were generated from dynamic PET images in nine regions of interest (ROIs) drawn on coregistered magnetic resonance imaging (MRI) scans. The average radioactivity was calculated in each ROI and was normalized to the average radioactivity in white matter. Patients with HAD showed significantly higher [11C]-R-PK11195 binding than controls in five out of eight brain regions (P < .05, Mann-Whitney U test). Nondemented HIV+ patients did not show significantly increased binding compared to controls. HIV+ patients overall (demented and nondemented) showed significantly higher radioligand binding than controls in five brain regions (P <0.05). Patients with HAD did not show significant differences in binding when compared to HIV+ nondemented patients. The findings of this pilot study support a role for glial cell activation in HAD, and that PET with [11C]-R-PK11195 can detect the concomitants of neuronal damage in individuals infected with HIV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adle-Biassette H, Chretien F, Wingertsmann L, Hery C, Ereau T, Scaravilli F, Tardieu M, Gray F (1999). Neuronal apoptosis does not correlate with dementia in HIV infection but is related to microglial activation and axonal damage. Neuropathol Appl Neurobiol 25: 123–133.

    Article  CAS  PubMed  Google Scholar 

  • American Academy of Neurology AIDS Task Force A (1991). Nomenclature and research case definitions for neurologic manifestations of human immunodeficiency virus-type 1 (HIV-1) infection. Report of a Working Group of the American Academy of Neurology AIDS Task Force. Neurology 41: 778–785.

    Google Scholar 

  • Banati RB (2002). Visualising microglial activation in vivo. Glia 40: 206–217.

    Article  PubMed  Google Scholar 

  • Banati RB, Goerres GW, Myers R, Gunn RN, Turkheimer FE, Kreutzberg GW, Brooks DJ, Jones T, Duncan JS (1999). [11C](R)-PK11195 positron emission tomography imaging of activated microglia in vivo in Rasmussen’s encephalitis. Neurology 53: 2199–2203.

    CAS  PubMed  Google Scholar 

  • Banati RB, Myers R, Kreutzberg GW (1997). PK (‘peripheral benzodiazepine’)—binding sites in the CNS indicate early and discrete brain lesions: microautoradiographic detection of [3H]PK11195 binding to activated microglia. J Neurocytol 26: 77–82.

    Article  CAS  PubMed  Google Scholar 

  • Banati RB, Newcombe J, Gunn RN, Cagnin A, Turkheimer F, Heppner F, Price G, Wegner F, Giovannoni G, Miller DH, Perkin GD, Smith T, Hewson AK, Bydder G, Kreutzberg GW, Jones T, Cuzner ML, Myers R (2000). The peripheral benzodiazepine binding site in the brain in multiple sclerosis: quantitative in vivo imaging of microglia as a measure of disease activity. Brain 123(Pt 11): 2321–2337.

    Article  PubMed  Google Scholar 

  • Bell JE, Busuttil A, Ironside JW, Rebus S, Donaldson YK, Simmonds P, Peutherer JF (1993). Human immunodeficiency virus and the brain: investigation of virus load and neuropathologic changes in pre-AIDS subjects. J Infect Dis 168: 818–824.

    CAS  PubMed  Google Scholar 

  • Benavides J, Bourdiol F, Dubois A, Scatton B (1991). Regional pattern of increased omega 3 (peripheral type benzodiazepine) binding site densities in the rat brain induced by systemic injection of kainic acid. Neurosci Lett 125: 219–222.

    Article  CAS  PubMed  Google Scholar 

  • Brew BJ, Corbeil J, Pemberton L, Evans L, Saito K, Penny R, Cooper DA, Heyes MP (1995). Quinolinic acid production is related to macrophage tropic isolates of HIV-1. J NeuroVirol 1: 369–374.

    Article  CAS  PubMed  Google Scholar 

  • Cagnin A, Brooks DJ, Kennedy AM, Gunn RN, Myers R, Turkheimer FE, Jones T, Banati RB (2001a). In-vivo measurement of activated microglia in dementia. Lancet 358: 461–467.

    Article  CAS  PubMed  Google Scholar 

  • Cagnin A, Myers R, Gunn RN, Lawrence AD, Stevens T, Kreutzberg GW, Jones T, Banati RB (2001b). In vivo visualization of activated glia by [11C] (R)-PK11195-PET following herpes encephalitis reveals projected neuronal damage beyond the primary focal lesion. Brain 124: 2014–2027.

    Article  CAS  PubMed  Google Scholar 

  • Chang L, Lee PL, Yiannoutsos CT, Ernst T, Marra CM, Richards T, Kolson D, Schifitto G, Jarvik JG, Miller EN, Lenkinski R, Gonzalez G, Navia BA (2004). A multicenter in vivo proton-MRS study of HIV-associated dementia and its relationship to age. Neuroimage 23: 1336–1347.

    Article  CAS  PubMed  Google Scholar 

  • Chen MK, Baidoo K, Verina T, Guilarte TR (2004). Peripheral benzodiazepine receptor imaging in CNS demyelination: functional implications of anatomical and cellular localization. Brain 127: 1379–1392.

    Article  PubMed  Google Scholar 

  • Chen P, Mayne M, Power C, Nath A (1997). The Tat protein of HIV-1 induces tumor necrosis factor-alpha production. Implications for HIV-1-associated neurological diseases. J Biol Chem 272: 22385–22388.

    Article  CAS  PubMed  Google Scholar 

  • Conant K, Ma M, Nath A, Major EO (1996). Extracellular human immunodeficiency virus type 1 Tat protein is associated with an increase in both NF-kappa B binding and protein kinase C activity in primary human astrocytes. J Virol 70: 1384–1389.

    CAS  PubMed  Google Scholar 

  • Debruyne JC, Van Laere KJ, Versijpt J, De Vos F, Eng JK, Strijckmans K, Santens P, Achten E, Slegers G, Korf J, Dierckx RA, De Reuck JL (2002). Semiquantification of the peripheral-type benzodiazepine ligand [11C]PK11195 in normal human brain and application in multiple sclerosis patients. Acta Neurol Belg 102: 127–135.

    PubMed  Google Scholar 

  • Debruyne JC, Versijpt J, Van Laere KJ, De Vos F, Keppens J, Strijckmans K, Achten E, Slegers G, Dierckx RA, Korf J, De Reuck JL (2003). PET visualization of microglia in multiple sclerosis patients using [11C]PK11195. Eur J Neurol 10: 257–264.

    Article  CAS  PubMed  Google Scholar 

  • DeGrado TR, Turkington TG, Williams JJ, Stearns CW, Hoffman JM, Coleman RE (1994). Performance characteristics of a whole-body PET scanner. J Nucl Med 35: 1398–1406.

    CAS  PubMed  Google Scholar 

  • Donaldson YK, Bell JE, Ironside JW, Brettle RP, Robertson JR, Busuttil A, Simmonds P (1994). Redistribution of HIV outside the lymphoid system with onset of AIDS. Lancet 343: 383–385.

    Article  CAS  PubMed  Google Scholar 

  • Ernst T, Chang L, Arnold S (2003). Increased glial metabolites predict increased working memory network activation in HIV brain injury. Neuroimage 19: 1686–1693.

    Article  CAS  PubMed  Google Scholar 

  • Garden GA (2002). Microglia in human immunodeficiency virus-associated neurodegeneration. Glia 40: 240–251.

    Article  PubMed  Google Scholar 

  • Gartner S (2000). HIV infection and dementia. Science 287: 602–604.

    Article  CAS  PubMed  Google Scholar 

  • Gartner S, Liu Y (2002). Insights into the role of immune activation in HIV neuropathogenesis. J NeuroVirol 8: 69–75.

    Article  CAS  PubMed  Google Scholar 

  • Gelbard HA, Nottet HS, Swindells S, Jett M, Dzenko KA, Genis P, White R, Wang L, Choi YB, Zhang D, et al. (1994). Platelet-activating factor: a candidate human immunodeficiency virus type 1-induced neurotoxin. J Virol 68: 4628–4635.

    CAS  PubMed  Google Scholar 

  • Groom GN, Junck L, Foster NL, Frey KA, Kuhl DE (1995). PET of peripheral benzodiazepine binding sites in the microgliosis of Alzheimer’s disease. J Nucl Med 36: 2207–2210.

    CAS  PubMed  Google Scholar 

  • Hilton J, Yokoi F, Dannals RF, Ravert HT, Szabo Z, Wong DF (2000). Column-switching HPLC for the analysis of plasma in PET imaging studies. Nucl Med Biol 27: 627–630.

    Article  CAS  PubMed  Google Scholar 

  • Ilyin SE, Plata-Salaman CR (1997). HIV-1 envelope glycoprotein 120 regulates brain IL-1beta system and TNF-alpha mRNAs in vivo. Brain Res Bull 44: 67–73.

    Article  CAS  PubMed  Google Scholar 

  • Jaranowska A, Bussolino F, Sogos V, Arese M, Lauro GM, Gremo F (1995). Platelet-activating factor production by human fetal microglia. Effect of lipopolysaccharides and tumor necrosis factor-alpha. Mol Chem Neuropathol 24: 95–106.

    Article  CAS  PubMed  Google Scholar 

  • Kaul M, Garden GA, Lipton SA (2001). Pathways to neuronal injury and apoptosis in HIV-associated dementia. Nature 410: 988–994.

    Article  CAS  PubMed  Google Scholar 

  • Kaul M, Lipton SA (2004). Signaling pathways to neuronal damage and apoptosis in human immunodeficiency virus type 1-associated dementia: chemokine receptors, excitotoxicity, and beyond. J NeuroVirol 10(Suppl 1): 97–101.

    CAS  PubMed  Google Scholar 

  • Kort JJ (1998). Impairment of excitatory amino acid transport in astroglial cells infected with the human immunodeficiency virus type 1. AIDS Res Hum Retroviruses 14: 1329–1339.

    Article  CAS  PubMed  Google Scholar 

  • Kropholler MA, Boellaard R, Schuitemaker A, Van Berckel B, Lammertsma AA (2004). Development of a plasma input model for analysis of [11C](R)-PK11195 studies. NeuroImage 22: T184-T185.

    Google Scholar 

  • Kuhlmann AC, Guilarte TR (1999). Regional and temporal expression of the peripheral benzodiazepine receptor in MPTP neurotoxicity. Toxicol Sci 48: 107–116.

    Article  CAS  PubMed  Google Scholar 

  • Kuhlmann AC, Guilarte TR (2000). Cellular and subcellular localization of peripheral benzodiazepine receptors after trimethyltin neurotoxicity. J Neurochem 74: 1694–1704.

    Article  CAS  PubMed  Google Scholar 

  • Kure K, Lyman WD, Weidenheim KM, Dickson DW (1990). Cellular localization of an HIV-1 antigen in subacute AIDS encephalitis using an improved double-labeling immunohistochemical method. Am J Pathol 136: 1085–1092.

    CAS  PubMed  Google Scholar 

  • Lee PL, Yiannoutsos CT, Ernst T, Chang L, Marra CM, Jarvik JG, Richards TL, Kwok EW, Kolson DL, Simpson D, Tang CY, Schifitto G, Ketonen LM, Meyerhoff DJ, Lenkinski RE, Gonzalez RG, Navia BA (2003). A multi-center 1H MRS study of the AIDS dementia complex: validation and preliminary analysis. J Magn Reson Imaging 17: 625–633.

    Article  PubMed  Google Scholar 

  • Lipton SA (1993). Human immunodeficiency virus-infected macrophages, gp120, and N-methyl-d-aspartate receptor mediated neurotoxicity. Ann Neurol 33: 227–228.

    Article  CAS  PubMed  Google Scholar 

  • Mankowski JL, Queen SE, Tarwater PJ, Adams RJ, Guilarte TR (2003). Elevated peripheral benzodiazepine receptor expression in simian immunodeficiency virus encephalitis. J NeuroVirol 9: 94–100.

    CAS  PubMed  Google Scholar 

  • McArthur JC, Haughey N, Gartner S, Conant K, Pardo C, Nath A, Sacktor N (2003). Human immunodeficiency virus-associated dementia: an evolving disease. J NeuroVirol 9: 205–221.

    CAS  PubMed  Google Scholar 

  • Myers R, Manjil LG, Cullen BM, Price GW, Frackowiak RS, Cremer JE (1991). Macrophage and astrocyte populations in relation to [3H]PK 11195 binding in rat cerebral cortex following a local ischaemic lesion. J Cereb Blood FlowMetab 11: 314–322.

    CAS  Google Scholar 

  • Neuen-Jacob E, Arendt G, Wendtland B, Jacob B, Schneeweis M, Wechsler W (1993). Frequency and topographical distribution of CD68-positive macrophages and HIV-1 core proteins in HIV-associated brain lesions. Clin Neuropathol 12: 315–324.

    CAS  PubMed  Google Scholar 

  • Nicolini A, Ajmone-Cat MA, Bernardo A, Levi G, Minghetti L (2001). Human immunodeficiency virus type-1 Tat protein induces nuclear factor (NF)-kappaB activation and oxidative stress in microglial cultures by independent mechanisms. J Neurochem 79: 713–716.

    Article  CAS  PubMed  Google Scholar 

  • Pappata S, Levasseur M, Gunn RN, Myers R, Crouzel C, Syrota A, Jones T, Kreutzberg GW, Banati RB (2000). Thalamic microglial activation in ischemic stroke detected in vivo by PET and [11C]PK1195. Neurology 55: 1052–1054.

    CAS  PubMed  Google Scholar 

  • Price GW, Ahier RG, Hume SP, Myers R, Manjil L, Cremer JE, Luthra SK, Pascali C, Pike V, Frackowiak RS (1990). In vivo binding to peripheral benzodiazepine binding sites in lesioned rat brain: comparison between [3H]PK11195 and [18F]PK14105 as markers for neuronal damage. J Neurochem 55: 175–185.

    Article  CAS  PubMed  Google Scholar 

  • Pulliam L, Gascon R, Stubblebine M, McGuire D, McGrath MS (1997). Unique monocyte subset in patients with AIDS dementia. Lancet 349: 692–695.

    Article  CAS  PubMed  Google Scholar 

  • Robb RA (2001). The biomedical imaging resource at Mayo Clinic. IEEE Trans Med Imaging 20: 854–867.

    Article  CAS  PubMed  Google Scholar 

  • Rottman JB, Ganley KP, Williams K, Wu L, Mackay CR, Ringler DJ (1997). Cellular localization of the chemokine receptor CCR5. Correlation to cellular targets of HIV-1 infection. Am J Pathol 151: 1341–1351.

    CAS  PubMed  Google Scholar 

  • Sauvageau A, Desjardins P, Lozeva V, Rose C, Hazell AS, Bouthillier A, Butterwort RF (2002). Increased expression of “peripheral-type” benzodiazepine receptors in human temporal lobe epilepsy: implications for PET imaging of hippocampal sclerosis. Metab Brain Dis 17: 3–11.

    Article  CAS  PubMed  Google Scholar 

  • Stephenson DT, Schober DA, Smalstig EB, Mincy RE, Gehlert DR, Clemens JA (1995). Peripheral benzodiazepine receptors are colocalized with activated microglia following transient global forebrain ischemia in the rat. J Neurosci 15: 5263–5274.

    CAS  PubMed  Google Scholar 

  • Takahashi K, Wesselingh SL, Griffin DE, McArthur JC, Johnson RT, Glass JD (1996). Localization of HIV-1 in human brain using polymerase chain reaction/in situ hybridization and immunocytochemistry. Ann Neurol 39: 705–711.

    Article  CAS  PubMed  Google Scholar 

  • Turner MR, Cagnin A, Turkheimer FE, Miller CC, Shaw CE, Brooks DJ, Leigh PN, Banati RB (2004). Evidence of widespread cerebral microglial activation in amyotrophic lateral sclerosis: an [11C](R)-PK11195 positron emission tomography study. Neurobiol Dis 15: 601–609.

    Article  CAS  PubMed  Google Scholar 

  • Vallat AV, De Girolami U, He J, Mhashilkar A, Marasco W, Shi B, Gray F, Bell J, Keohane C, Smith TW, Gabuzda D (1998). Localization of HIV-1 co-receptors CC-R5 and CXCR4 in the brain of children with AIDS. Am J Pathol 152: 167–178.

    CAS  PubMed  Google Scholar 

  • Venneti S, Lopresti BJ, Wang G, Bissel SJ, Mathis CA, Meltzer CC, Boada F, Capuano S, 3rd, Kress GJ, Davis DK, Ruszkiewicz J, Reynolds IJ, Murphey-Corb M, Trichel AM, Wisniewski SR, Wiley CA (2004). PET imaging of brain macrophages using the peripheral benzodiazepine receptor in a macaque model of neuroAIDS. J Clin Invest 113: 981–989.

    CAS  PubMed  Google Scholar 

  • von Giesen HJ, Wittsack HJ, Wenserski F, Koller H, Hefter H, Arendt G (2001). Basal ganglia metabolite abnormalities in minor motor disorders associated with human immunodeficiency virus type 1. Arch Neurol 58: 1281–1286.

    Article  Google Scholar 

  • Vowinckel E, Reutens D, Becher B, Verge G, Evans A, Owens T, Antel JP (1997). PK11195 binding to the peripheral benzodiazepine receptor as a marker of microglia activation in multiple sclerosis and experimental autoimmune encephalomyelitis. J Neurosci Res 50: 345–353.

    Article  CAS  PubMed  Google Scholar 

  • Ward JM, O’Leary TJ, Baskin GB, Benveniste R, Harris CA, Nara PL, Rhodes RH (1987). Immunohistochemical localization of human and simian immunodeficiency viral antigens in fixed tissue sections. Am J Pathol 127: 199–205.

    CAS  PubMed  Google Scholar 

  • Wesselingh SL, Takahashi K, Glass JD, McArthur JC, Griffin JW, Griffin DE (1997). Cellular localization of tumor necrosis factor mRNA in neurological tissue from HIV-infected patients by combined reverse transcriptase/polymerase chain reaction in situ hybridization and immunohistochemistry. J Neuroimmunol 74: 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Yeh MW, Kaul M, Zheng J, Nottet HS, Thylin M, Gendelman HE, Lipton SA (2000). Cytokine-stimulated, but not HIV-infected, human monocyte-derived macrophages produce neurotoxic levels of l-cysteine. J Immunol 164: 4265–4270.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin G. Pomper.

Additional information

This work is supported by MH61438, the Johns Hopkins Center for AIDS Research (both to M.G.P.) and ES07062 (to T.R.G.).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hammoud, D.A., Endres, C.J., Chander, A.R. et al. Imaging glial cell activation with [11C]-R-PK11195 in patients with AIDS. Journal of NeuroVirology 11, 346–355 (2005). https://doi.org/10.1080/13550280500187351

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1080/13550280500187351

Keywords

Navigation