Semin Musculoskelet Radiol 2014; 18(02): 103-122
DOI: 10.1055/s-0034-1371014
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Recent Advances in Hybrid Molecular Imaging Systems

Jae Sung Lee
1   Departments of Nuclear Medicine and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
,
Joong Hyun Kim
2   Department of Nuclear Medicine, Seoul National University Bundang Hospital, Gyeonggi-Do, Korea
› Author Affiliations
Further Information

Publication History

Publication Date:
08 April 2014 (online)

Abstract

Nuclear medicine imaging methods that use radionuclides, such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT), offer highly sensitive and quantitative tools for the detection and localization of the biochemical and functional abnormalities associated with various diseases. The introduction of dual-modality PET/CT and SPECT/CT systems to the clinical environment in the late 1990s is regarded as a revolutionary advance in modern diagnostic imaging, bringing precise anatomical localization to conventional PET and SPECT imaging techniques and enhancing the quantitation capabilities of these modalities. The great success of PET/CT has also revived interest in the combination of PET and MR scanners, leading to commercially available clinical PET/MR systems. In this article, we review the recent improvements made in these hybrid molecular imaging systems, which have been dramatic in terms of both hardware and software over the past decade. We focus primarily on the hybrid imaging systems that are currently used in clinical practice and the technologies applied in those systems, with emphasis on the efforts to improve their diagnostic performances for musculoskeletal diseases.

 
  • References

  • 1 Rybicki FJ, Otero HJ, Steigner ML , et al. Initial evaluation of coronary images from 320-detector row computed tomography. Int J Cardiovasc Imaging 2008; 24 (5) 535-546
  • 2 Hsieh J. Computed Tomography: Principles, Design, Artifacts, and Recent Advances. 2nd ed. Bellingham, WA: SPIE; 2009
  • 3 Yu L, Liu X, Leng S , et al. Radiation dose reduction in computed tomography: techniques and future perspective. Imaging Med 2009; 1 (1) 65-84
  • 4 Blamire AM. The technology of MRI—the next 10 years?. Br J Radiol 2008; 81 (968) 601-617
  • 5 Gold GE, Chen CA, Koo S, Hargreaves BA, Bangerter NK. Recent advances in MRI of articular cartilage. AJR Am J Roentgenol 2009; 193 (3) 628-638
  • 6 Kim K-N, Jeong H, Heo P , et al. Improving RF field strength and uniformity in a local region by controlling individual transmitting RF phase in a 7T tranceive array coil. Biomed Eng Lett 2012; 2 (4) 223-232
  • 7 Pomper MG, Lee JS. Small animal imaging in drug development. Curr Pharm Des 2005; 11 (25) 3247-3272
  • 8 Hill DLG, Batchelor PG, Holden M, Hawkes DJ. Medical image registration. Phys Med Biol 2001; 46 (3) R1-R45
  • 9 Zitová B, Flusser J. Image registration methods: a survey. Image Vis Comput 2003; 21: 977-1000
  • 10 Lee JS, Park KS, Lee DS, Lee CW, Chung JK, Lee MC. Development and applications of a software for Functional Image Registration (FIRE). Comput Methods Programs Biomed 2005; 78 (2) 157-164
  • 11 Gaidhane VH, Hote YV, Singh V. Nonrigid image registration using efficient similarity measure and Levenberg-Marquardt optimization. Biomed Eng Lett 2012; 2 (2) 118-123
  • 12 LaCroix KJ, Tsui BMW, Hasegawa BH, Brown JK. Investigation of the use of x-ray CT images for attenuation correction in SPECT. IEEE Trans Nucl Sci 1994; 41: 2793-2799
  • 13 Blankespoor SC, Xu X, Kaiki K , et al. Attenuation correction of SPECT using X-ray CT on an emission-transmission CT system: myocardial perfusion assessment. IEEE Trans Nucl Sci 1996; 43 (4) 2263-2274
  • 14 Seo Y, Mari C, Hasegawa BH. Technological development and advances in single-photon emission computed tomography/computed tomography. Semin Nucl Med 2008; 38 (3) 177-198
  • 15 Beyer T, Townsend DW, Brun T , et al. A combined PET/CT scanner for clinical oncology. J Nucl Med 2000; 41 (8) 1369-1379
  • 16 Townsend DW. Dual-modality imaging: combining anatomy and function. J Nucl Med 2008; 49 (6) 938-955
  • 17 Zaidi H, Alavi A. Current trends in PET and combined (PET/CT and PET/MR) systems design. PET Clin 2007; 2 (2) 109-123
  • 18 Lee JS. Technical advances in current PET and hybrid imaging systems. Open Nucl Med J 2010; 2: 192-208
  • 19 Shao Y, Cherry SR, Farahani K , et al. Simultaneous PET and MR imaging. Phys Med Biol 1997; 42 (10) 1965-1970
  • 20 Raylman RR, Majewski S, Lemieux SK , et al. Simultaneous MRI and PET imaging of a rat brain. Phys Med Biol 2006; 51 (24) 6371-6379
  • 21 Cherry SR. Multimodality imaging: beyond PET/CT and SPECT/CT. Semin Nucl Med 2009; 39 (5) 348-353
  • 22 Hicks RJ, Hofman MS. Is there still a role for SPECT-CT in oncology in the PET-CT era?. Nat Rev Clin Oncol 2012; 9 (12) 712-720
  • 23 Saha S, Burke C, Desai A, Vijayanathan S, Gnanasegaran G. SPECT-CT: applications in musculoskeletal radiology. Br J Radiol 2013; 86 (1031) 20120519
  • 24 Hung NM, Joung J, Lee K, Kim Y. Development of correction schemes for a small field of view gamma camera. Biomed Eng Lett 2012; 2 (4) 215-222
  • 25 Cherry SR, Sorenson JA, Phelps ME. Physics in Nuclear Medicine. 4th ed. Philadelphia, PA: Elsevier Saunders; 2012
  • 26 Anger HO. Scintillation camera. Rev Sci Instrum 1957; 29: 27-33
  • 27 Anger HO. Scintillation camera with multichannel collimators. J Nucl Med 1964; 5: 515-531
  • 28 Zeng GL, Galt JR, Wernick MN, Mintzer RA, Aarsvold JN. Single-photon emission computed tomography. In: Wernick MN, Aarsvold JN, , eds. Emission Tomography: The Fundamentals of PET and SPECT. San Diego, CA: Elsevier; 2004: 127-152
  • 29 Peterson TE, Furenlid LR. SPECT detectors: the Anger Camera and beyond. Phys Med Biol 2011; 56 (17) R145-R182
  • 30 CZT technology: fundamentals and applications. GE Heathcare White Paper 2010. Available at: http://www3.gehealthcare.com/~/media/Downloads/us/Product/Categories/Nuclear-Medicine/Cardiac%20Scanners/Discovery-NM570c/GEHealthcare-Whitepaper_CZT-Technology-20111201.pdf . Accessed on March 18, 2014
  • 31 Patton JA, Slomka PJ, Germano G, Berman DS. Recent technologic advances in nuclear cardiology. J Nucl Cardiol 2007; 14 (4) 501-513
  • 32 Erlandsson K, Kacperski K, van Gramberg D, Hutton BF. Performance evaluation of D-SPECT: a novel SPECT system for nuclear cardiology. Phys Med Biol 2009; 54 (9) 2635-2649
  • 33 Esteves FP, Raggi P, Folks RD , et al. Novel solid-state-detector dedicated cardiac camera for fast myocardial perfusion imaging: multicenter comparison with standard dual detector cameras. J Nucl Cardiol 2009; 16 (6) 927-934
  • 34 DePuey EG. Advances in SPECT camera software and hardware: currently available and new on the horizon. J Nucl Cardiol 2012; 19 (3) 551-581 ; quiz 585
  • 35 Garcia EV, Faber TL, Esteves FP. Cardiac dedicated ultrafast SPECT cameras: new designs and clinical implications. J Nucl Med 2011; 52 (2) 210-217
  • 36 Frey E, Tsui B. Collimator-detector response compensation in SPECT. In: Zaidi H, , ed. Quantitative Analysis of Nuclear Medicine Images. New York, NY: Springer; 2006: 141-166
  • 37 Rahmim A, Zaidi H. PET versus SPECT: strengths, limitations and challenges. Nucl Med Commun 2008; 29 (3) 193-207
  • 38 Ritt P, Vija H, Hornegger J, Kuwert T. Absolute quantification in SPECT. Eur J Nucl Med Mol Imaging 2011; 38 (Suppl. 01) S69-S77
  • 39 Stansfield EC, Sheehy N, Zurakowski D, Vija AH, Fahey FH, Treves ST. Pediatric 99mTc-MDP bone SPECT with ordered subset expectation maximization iterative reconstruction with isotropic 3D resolution recovery. Radiology 2010; 257 (3) 793-801
  • 40 Bailey DL, Willowson KP. An evidence-based review of quantitative SPECT imaging and potential clinical applications. J Nucl Med 2013; 54 (1) 83-89
  • 41 Bailey DL. Transmission scanning in emission tomography. Eur J Nucl Med 1998; 25 (7) 774-787
  • 42 Zaidi H, Hasegawa B. Determination of the attenuation map in emission tomography. J Nucl Med 2003; 44 (2) 291-315
  • 43 Vija H. Introduction to xSPECT technology: evolving multi-modal SPECT to become context-based and quantitative. Siemens Medical Solutions USA Inc. White Paper 2013. Available at: http://www.healthcare.siemens.com/siemens_hwem-hwen_ssxa_websites-context-root/wcm/idc/groups/public/@global/@imaging/@molecular/documents/download/mdax/ote3/~edisp/xspect_technical_white_paper-00957532.pdf . Accessed on: March 18, 2014
  • 44 Costelloe CM, Murphy Jr WA, Chasen BA. Musculoskeletal pitfalls in 18F-FDG PET/CT: pictorial review. AJR Am J Roentgenol 2009; 193 (3, Suppl): WS1-WS13 ; quiz S26–S30
  • 45 Lakkaraju A, Patel CN, Bradley KM, Scarsbrook AF. PET/CT in primary musculoskeletal tumours: a step forward. Eur Radiol 2010; 20 (12) 2959-2972
  • 46 Fischer DR. Musculoskeletal imaging using fluoride PET. Semin Nucl Med 2013; 43 (6) 427-433
  • 47 Yoon SH, Kim KS, Kang SY , et al. Usefulness of 18F-fluoride PET/CT in breast cancer patients with osteosclerotic bone metastases. Nucl Med Mol Imaging 2013; 47 (1) 27-35
  • 48 Grant FD, Fahey FH, Packard AB, Davis RT, Alavi A, Treves ST. Skeletal PET with 18F-fluoride: applying new technology to an old tracer. J Nucl Med 2008; 49 (1) 68-78
  • 49 Kang JY, Lee WW, So Y, Lee BC, Kim SE. Clinical usefulness of 18F-fluoride bone PET. Nucl Med Mol Imaging 2010; 44 (1) 55-61
  • 50 Lewellen TK. Recent developments in PET detector technology. Phys Med Biol 2008; 53 (17) R287-R317
  • 51 Ito M, Hong SJ, Lee JS. Positron emission tomography (PET) detectors with depth-of-interaction (DOI) capability. Biomed Eng Lett 2011; 1 (2) 70-81
  • 52 Conti M. Focus on time-of-flight PET: the benefits of improved time resolution. Eur J Nucl Med Mol Imaging 2011; 38 (6) 1147-1157
  • 53 Rahmim A, Qi J, Sossi V. Resolution modeling in PET imaging: theory, practice, benefits, and pitfalls. Med Phys 2013; 40 (6) 064301
  • 54 Alessio AM, Kinahan PE, Lewellen TK. Modeling and incorporation of system response functions in 3D whole body PET. IEEE Nucl Sci Symp Conf Rec 2004; 6: 3992-3996
  • 55 Kadrmas DJ, Casey ME, Conti M, Jakoby BW, Lois C, Townsend DW. Impact of time-of-flight on PET tumor detection. J Nucl Med 2009; 50 (8) 1315-1323
  • 56 Akamatsu G, Ishikawa K, Mitsumoto K , et al. Improvement in PET/CT image quality with a combination of point-spread function and time-of-flight in relation to reconstruction parameters. J Nucl Med 2012; 53 (11) 1716-1722
  • 57 Schaefferkoetter J, Casey M, Townsend D, El Fakhri G. Clinical impact of time-of-flight and point response modeling in PET reconstructions: a lesion detection study. Phys Med Biol 2013; 58 (5) 1465-1478
  • 58 Watson CC. Estimating effective model kernel widths for PSF reconstruction in PET. IEEE Nucl Sci Symp Conf Rec 2011; 2368-2374
  • 59 National Council on Radiation Protection & Measurements (NCRP) Report no. 160: Ionizing radiation exposure of the population of the United States (2009). Available at: http://www.ncrppublications.org/Reports/160 . Accessed January 9, 2014
  • 60 Chen GH, Tang J, Leng S. Prior image constrained compressed sensing (PICCS): a method to accurately reconstruct dynamic CT images from highly undersampled projection data sets. Med Phys 2008; 35 (2) 660-663
  • 61 Sidky EY, Pan X. Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization. Phys Med Biol 2008; 53 (17) 4777-4807
  • 62 Beekma FJ, Kamphuis C. Ordered subset reconstruction for x-ray CT. Phys Med Biol 2001; 46 (7) 1835-1844
  • 63 Kole JS, Beekman FJ. Evaluation of accelerated iterative x-ray CT image reconstruction using floating point graphics hardware. Phys Med Biol 2006; 51 (4) 875-889
  • 64 Sharp GC, Kandasamy N, Singh H, Folkert M. GPU-based streaming architectures for fast cone-beam CT image reconstruction and demons deformable registration. Phys Med Biol 2007; 52 (19) 5771-5783
  • 65 Silva AC, Lawder HJ, Hara A, Kujak J, Pavlicek W. Innovations in CT dose reduction strategy: application of the adaptive statistical iterative reconstruction algorithm. AJR Am J Roentgenol 2010; 194 (1) 191-199
  • 66 McCollough CH, Bruesewitz MR, Kofler Jr JM. CT dose reduction and dose management tools: overview of available options. Radiographics 2006; 26 (2) 503-512
  • 67 Lee JS, Kang KW. PET/MRI. In: Kim EE, Lee MC, Inoue T, Wong W-H, , eds. Clinical PET and PET/CT: Principles and Applications. New York, NY: Springer; 2013: 373-390
  • 68 Pichler BJ, Wehrl HF, Kolb A, Judenhofer MS. Positron emission tomography/magnetic resonance imaging: the next generation of multimodality imaging?. Semin Nucl Med 2008; 38 (3) 199-208
  • 69 Zaidi H, Ojha N, Morich M , et al. Design and performance evaluation of a whole-body Ingenuity TF PET-MRI system. Phys Med Biol 2011; 56 (10) 3091-3106
  • 70 Surti S, Kuhn A, Werner ME, Perkins AE, Kolthammer J, Karp JS. Performance of Philips Gemini TF PET/CT scanner with special consideration for its time-of-flight imaging capabilities. J Nucl Med 2007; 48 (3) 471-480
  • 71 Catana C, Wu Y, Judenhofer MS, Qi J, Pichler BJ, Cherry SR. Simultaneous acquisition of multislice PET and MR images: initial results with a MR-compatible PET scanner. J Nucl Med 2006; 47 (12) 1968-1976
  • 72 Pichler BJ, Judenhofer MS, Catana C , et al. Performance test of an LSO-APD detector in a 7-T MRI scanner for simultaneous PET/MRI. J Nucl Med 2006; 47 (4) 639-647
  • 73 Schlemmer HP, Pichler BJ, Schmand M , et al. Simultaneous MR/PET imaging of the human brain: feasibility study. Radiology 2008; 248 (3) 1028-1035
  • 74 Delso G, Fürst S, Jakoby B , et al. Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner. J Nucl Med 2011; 52 (12) 1914-1922
  • 75 Lee JS, Hong SJ. Geiger-mode avalanche photodiodes for PET/MRI. In: Iniewski K, , ed. Electronic Circuits for Radiation Detection. Boca Raton, FL: CRC Press; 2010: 179-200
  • 76 Roncali E, Cherry SR. Application of silicon photomultipliers to positron emission tomography. Ann Biomed Eng 2011; 39 (4) 1358-1377
  • 77 Hong SJ, Song IC, Ito M , et al. An investigation into the use of Geiger-mode solid-state photomultipliers for simultaneous PET and MRI acquisition. IEEE Trans Nucl Sci 2008; 55 (3) 882-888
  • 78 Yamamoto S, Imaizumi M, Watabe T , et al. Development of a Si-PM-based high-resolution PET system for small animals. Phys Med Biol 2010; 55 (19) 5817-5831
  • 79 Kwon SI, Lee JS, Yoon HS , et al. Development of small-animal PET prototype using silicon photomultiplier (SiPM): initial results of phantom and animal imaging studies. J Nucl Med 2011; 52 (4) 572-579
  • 80 Yamaya T, Mitsuhashi T, Matsumoto T , et al. A SiPM-based isotropic-3D PET detector X'tal cube with a three-dimensional array of 1 mm(3) crystals. Phys Med Biol 2011; 56 (21) 6793-6807
  • 81 Ko GB, Yoon HS, Kwon SI , et al. Development of a front-end analog circuit for multi-channel SiPM readout and performance verification for various PET detector designs. Nucl Instr Meth A 2013; 703: 38-44
  • 82 Yoon HS, Ko GB, Kwon SI , et al. Initial results of simultaneous PET/MRI experiments with an MRI-compatible silicon photomultiplier PET scanner. J Nucl Med 2012; 53 (4) 608-614
  • 83 Levin C, Glover G, Deller T, McDaniel D, Peterson W, Maramraju SH. Prototype time-of-flight PET ring integrated with a 3T MRI system for simultaneous whole-body PET/MR imaging. J Nucl Med 2013; 54 (Suppl. 02) 148
  • 84 Burger C, Goerres G, Schoenes S, Buck A, Lonn AH, Von Schulthess GK. PET attenuation coefficients from CT images: experimental evaluation of the transformation of CT into PET 511-keV attenuation coefficients. Eur J Nucl Med Mol Imaging 2002; 29 (7) 922-927
  • 85 Kinahan PE, Hasegawa BH, Beyer T. X-ray-based attenuation correction for positron emission tomography/computed tomography scanners. Semin Nucl Med 2003; 33 (3) 166-179
  • 86 Carney JP, Townsend DW, Rappoport V, Bendriem B. Method for transforming CT images for attenuation correction in PET/CT imaging. Med Phys 2006; 33 (4) 976-983
  • 87 Hofmann M, Steinke F, Scheel V , et al. MRI-based attenuation correction for PET/MRI: a novel approach combining pattern recognition and atlas registration. J Nucl Med 2008; 49 (11) 1875-1883
  • 88 Schreibmann E, Nye JA, Schuster DM, Martin DR, Votaw J, Fox T. MR-based attenuation correction for hybrid PET-MR brain imaging systems using deformable image registration. Med Phys 2010; 37 (5) 2101-2109
  • 89 Kim JS, Lee JS, Park MH , et al. Feasibility of template-guided attenuation correction in cat brain PET imaging. Mol Imaging Biol 2010; 12 (3) 250-258
  • 90 Malone IB, Ansorge RE, Williams GB, Nestor PJ, Carpenter TA, Fryer TD. Attenuation correction methods suitable for brain imaging with a PET/MRI scanner: a comparison of tissue atlas and template attenuation map approaches. J Nucl Med 2011; 52 (7) 1142-1149
  • 91 Schulz V, Torres-Espallardo I, Renisch S , et al. Automatic, three-segment, MR-based attenuation correction for whole-body PET/MR data. Eur J Nucl Med Mol Imaging 2011; 38 (1) 138-152
  • 92 Martinez-Möller A, Souvatzoglou M, Delso G , et al. Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: evaluation with PET/CT data. J Nucl Med 2009; 50 (4) 520-526
  • 93 Hofmann M, Pichler B, Schölkopf B, Beyer T. Towards quantitative PET/MRI: a review of MR-based attenuation correction techniques. Eur J Nucl Med Mol Imaging 2009; 36 (Suppl. 01) S93-S104
  • 94 Johansson A, Karlsson M, Nyholm T. CT substitute derived from MRI sequences with ultrashort echo time. Med Phys 2011; 38 (5) 2708-2714
  • 95 Catana C, van der Kouwe A, Benner T , et al. Toward implementing an MRI-based PET attenuation-correction method for neurologic studies on the MR-PET brain prototype. J Nucl Med 2010; 51 (9) 1431-1438
  • 96 Keereman V, Fierens Y, Broux T, De Deene Y, Lonneux M, Vandenberghe S. MRI-based attenuation correction for PET/MRI using ultrashort echo time sequences. J Nucl Med 2010; 51 (5) 812-818
  • 97 Kim JH, Lee JS, Song IC, Lee DS. Comparison of segmentation-based attenuation correction methods for PET/MRI: evaluation of bone and liver standardized uptake value with oncologic PET/CT data. J Nucl Med 2012; 53 (12) 1878-1882
  • 98 Eiber M, Takei T, Souvatzoglou M , et al. Performance of whole-body integrated 18F-FDG PET/MR in comparison to PET/CT for evaluation of malignant bone lesions. J Nucl Med 2013;
  • 99 Marshall HR, Prato FS, Deans L, Théberge J, Thompson RT, Stodilka RZ. Variable lung density consideration in attenuation correction of whole-body PET/MRI. J Nucl Med 2012; 53 (6) 977-984