Semin Musculoskelet Radiol 2009; 13(3): 159-180
DOI: 10.1055/s-0029-1237687
© Thieme Medical Publishers

Nuclear Medicine Imaging of the Pediatric Musculoskeletal System

Amer Shammas1 , 2
  • 1Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Ontario, Canada
  • 2Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
Further Information

Publication History

Publication Date:
01 September 2009 (online)

ABSTRACT

Bone scintigraphy is a common pediatric nuclear medicine procedure and plays a significant role in the diagnosis of skeletal infection, trauma, and benign and malignant bone tumors. There is a complementary role for bone scintigraphy in the assessment of a child with suspected nonaccidental injury. High-quality images require careful attention to technique and positioning in children. Additional techniques such as magnification and single-photon emission computed tomography (SPECT) can be used for special indications and localization. Combined functional and anatomic imaging using SPECT/computed tomography (CT) imaging systems can improve diagnostic accuracy. Positron emission tomography (PET) using fluorine-18 fluorodeoxyglucose (FDG) is being applied with increasing frequency in the evaluation of children with malignancy. To interpret 18F-FDG PET appropriately, it is essential to know the normal physiological distribution. Using combined 18F-FDG PET/CT improves specificity and localization. This article reviews the common indications for bone scintigraphy and 18F-FDG PET/CT in benign and malignant pediatric musculoskeletal disease.

REFERENCES

  • 1 Connolly L P, Drubach S A, Connolly S A, Treves S T. Bone. In: Treves ST Pediatric Nuclear Medicine/PET. 3rd ed. New York, NY; Springer 2007: 312-403
  • 2 Nadel H R, Stilwell M E. Nuclear medicine topics in pediatric musculoskeletal disease: techniques and applications.  Radiol Clin North Am. 2001;  39(4) 619-651
  • 3 Gilday D L. Specific problems and musculoskeletal imaging in children. In: Sandler MP, Coleman RE, Patton JA, et al Diagnostic Nuclear Medicine. 4th ed. Philadelphia, PA; Lippincott Williams and Wilkins 2003: 1107-1115
  • 4 Connolly L P, Drubach L A, Treves S T. Pediatric skeletal scintigraphy. In: Henkin RE, Bova D, Dillehay GL, Karesh SM, Halama JR, Wagner RH Nuclear Medicine. 2nd ed. Philadelphia, PA; Mosby-Elsevier 2006: 1721-1744
  • 5 Ma J J, Kang B K, Treves S T. Pediatric musculoskeletal nuclear medicine.  Semin Musculoskelet Radiol. 2007;  11(4) 322-334
  • 6 Nadel H R. Bone scan update.  Semin Nucl Med. 2007;  37(5) 332-339
  • 7 Bybel B, Brunken R C, DiFilippo F P, Neumann D R, Wu G, Cerqueira M D. SPECT/CT imaging: clinical utility of an emerging technology.  Radiographics. 2008;  28(4) 1097-1113
  • 8 Horger M, Bares R. The role of single-photon emission computed tomography/computed tomography in benign and malignant bone disease.  Semin Nucl Med. 2006;  36(4) 286-294
  • 9 Domingues R C, Carneiro M P, Lopes F C, Domingues R C, da Fonseca L M, Gasparetto E L. Whole-body MRI and FDG PET fused images for evaluation of patients with cancer.  AJR Am J Roentgenol. 2009;  192(4) 1012-1020
  • 10 Pauwels E K, Ribeiro M J, Stoot J H, McCready V R, Bourguignon M, Mazière B. FDG accumulation and tumor biology.  Nucl Med Biol. 1998;  25(4) 317-322
  • 11 Zhuang H, Alavi A. 18-fluorodeoxyglucose positron emission tomographic imaging in the detection and monitoring of infection and inflammation.  Semin Nucl Med. 2002;  32(1) 47-59
  • 12 Love C, Tomas M B, Tronco G G, Palestro C J. FDG PET of infection and inflammation.  Radiographics. 2005;  25(5) 1357-1368
  • 13 Kubota R, Yamada S, Kubota K, Ishiwata K, Tamahashi N, Ido T. Intratumoral distribution of fluorine-18-fluorodeoxyglucose in vivo: high accumulation in macrophages and granulation tissues studied by microautoradiography.  J Nucl Med. 1992;  33(11) 1972-1980
  • 14 Iagaru A, Mittra E, Yaghoubi S S et al.. Novel strategy for a cocktail 18F-fluoride and 18F-FDG PET/CT scan for evaluation of malignancy: results of the pilot-phase study.  J Nucl Med. 2009;  50(4) 501-505
  • 15 Stauss J, Franzius C, Pfluger T European Association of Nuclear Medicine et al. Guidelines for 18F-FDG PET and PET-CT imaging in paediatric oncology.  Eur J Nucl Med Mol Imaging. 2008;  35(8) 1581-1588
  • 16 Barrington S F, Begent J, Lynch T et al.. Guidelines for the use of PET-CT in children.  Nucl Med Commun. 2008;  29(5) 418-424
  • 17 Delbeke D, Coleman R E, Guiberteau M J et al.. Procedure guideline for tumor imaging with 18F-FDG PET/CT 1.0  J Nucl Med. 2006;  47(5) 885-895
  • 18 Brix G, Lechel U, Glatting G et al.. Radiation exposure of patients undergoing whole-body dual-modality 18F-FDG PET/CT examinations.  J Nucl Med. 2005;  46(4) 608-613
  • 19 Fahey F H, Palmer M R, Strauss K J, Zimmerman R E, Badawi R D, Treves S T. Dosimetry and adequacy of CT-based attenuation correction for pediatric PET: phantom study.  Radiology. 2007;  243(1) 96-104
  • 20 Jadvar H, Connolly L P, Fahey F H, Shulkin B L. PET and PET/CT in pediatric oncology.  Semin Nucl Med. 2007;  37(5) 316-331
  • 21 Cook G J, Wegner E A, Fogelman I. Pitfalls and artifacts in 18FDG PET and PET/CT oncologic imaging.  Semin Nucl Med. 2004;  34(2) 122-133
  • 22 Jackson R S, Schlarman T C, Hubble W L, Osman M M. Prevalence and patterns of physiologic muscle uptake detected with whole-body 18F-FDG PET.  J Nucl Med Technol. 2006;  34(1) 29-33
  • 23 Barrington S F, Maisey M N. Skeletal muscle uptake of fluorine-18-FDG: effect of oral diazepam.  J Nucl Med. 1996;  37(7) 1127-1129
  • 24 Yeung H W, Grewal R K, Gonen M, Schöder H, Larson S M. Patterns of (18)F-FDG uptake in adipose tissue and muscle: a potential source of false-positives for PET.  J Nucl Med. 2003;  44(11) 1789-1796
  • 25 Gelfand M J, O'Hara S M, Curtwright L A, Maclean J R. Pre-medication to block [(18)F]FDG uptake in the brown adipose tissue of pediatric and adolescent patients.  Pediatr Radiol. 2005;  35(10) 984-990
  • 26 Parysow O, Mollerach A M, Jager V, Racioppi S, San Roman J, Gerbaudo V H. Low-dose oral propranolol could reduce brown adipose tissue F-18 FDG uptake in patients undergoing PET scans.  Clin Nucl Med. 2007;  32(5) 351-357
  • 27 Kazama T, Swanston N, Podoloff D A, Macapinlac H A. Effect of colony-stimulating factor and conventional- or high-dose chemotherapy on FDG uptake in bone marrow.  Eur J Nucl Med Mol Imaging. 2005;  32(12) 1406-1411
  • 28 Faden H, Grossi M. Acute osteomyelitis in children. Reassessment of etiologic agents and their clinical characteristics.  Am J Dis Child. 1991;  145(1) 65-69
  • 29 Connolly L P, Treves S T. Assessing the limping child with skeletal scintigraphy.  J Nucl Med. 1998;  39(6) 1056-1061
  • 30 Wegener W A, Alavi A. Diagnostic imaging of musculoskeletal infection. Roentgenography; gallium, indium-labeled white blood cell, gammaglobulin, bone scintigraphy; and MRI.  Orthop Clin North Am. 1991;  22(3) 401-418
  • 31 Schauwecker D S. The scintigraphic diagnosis of osteomyelitis.  AJR Am J Roentgenol. 1992;  158(1) 9-18
  • 32 Traughber P D, Manaster B J, Murphy K, Alazraki N P. Negative bone scans of joints after aspiration or arthrography: experimental studies.  AJR Am J Roentgenol. 1986;  146(1) 87-91
  • 33 Pennington W T, Mott M P, Thometz J G, Sty J R, Metz D. Photopenic bone scan osteomyelitis: a clinical perspective.  J Pediatr Orthop. 1999;  19(6) 695-698
  • 34 Tsao A K, Dias L S, Conway J J, Straka P. The prognostic value and significance of serial bone scintigraphy in Legg-Calvé-Perthes disease.  J Pediatr Orthop. 1997;  17(2) 230-239
  • 35 Conway J J. A scintigraphic classification of Legg-Calvé-Perthes disease.  Semin Nucl Med. 1993;  23(4) 274-295
  • 36 Comte F, De Rosa V, Zekri H et al.. Confirmation of the early prognostic value of bone scanning and pinhole imaging of the hip in Legg-Calvé-Perthes disease.  J Nucl Med. 2003;  44(11) 1761-1766
  • 37 Skaggs D L, Kim S K, Greene N W, Harris D, Miller J H. Differentiation between bone infarction and acute osteomyelitis in children with sickle-cell disease with use of sequential radionuclide bone-marrow and bone scans.  J Bone Joint Surg Am. 2001;  83-A(12) 1810-1813
  • 38 Drubach L A, Connolly L P, D'Hemecourt P A, Treves S T. Assessment of the clinical significance of asymptomatic lower extremity uptake abnormality in young athletes.  J Nucl Med. 2001;  42(2) 209-212
  • 39 Zwas S T, Elkanovitch R, Frank G. Interpretation and classification of bone scintigraphic findings in stress fractures.  J Nucl Med. 1987;  28(4) 452-457
  • 40 Anderson M W, Greenspan A. Stress fractures.  Radiology. 1996;  199(1) 1-12
  • 41 Ishibashi Y, Okamura Y, Otsuka H, Nishizawa K, Sasaki T, Toh S. Comparison of scintigraphy and magnetic resonance imaging for stress injuries of bone.  Clin J Sport Med. 2002;  12(2) 79-84
  • 42 Sty J R, Wells R G, Conway J J. Spine pain in children.  Semin Nucl Med. 1993;  23(4) 296-320
  • 43 Connolly L P, d'Hemecourt P A, Connolly S A, Drubach L A, Micheli L J, Treves S T. Skeletal scintigraphy of young patients with low-back pain and a lumbosacral transitional vertebra.  J Nucl Med. 2003;  44(6) 909-914
  • 44 Bron J L, van Royen B J, Wuisman P I. The clinical significance of lumbosacral transitional anomalies.  Acta Orthop Belg. 2007;  73(6) 687-695
  • 45 Pekindil G, Sarikaya A, Pekindil Y, Gültekin A, Kokino S. Lumbosacral transitional vertebral articulation: evaluation by planar and SPECT bone scintigraphy.  Nucl Med Commun. 2004;  25(1) 29-37
  • 46 Mandelstam S A, Cook D, Fitzgerald M, Ditchfield M R. Complementary use of radiological skeletal survey and bone scintigraphy in detection of bony injuries in suspected child abuse.  Arch Dis Child. 2003;  88(5) 387-390 discussion 387-390
  • 47 Conway J J, Collins M, Tanz R R et al.. The role of bone scintigraphy in detecting child abuse.  Semin Nucl Med. 1993;  23(4) 321-333
  • 48 Intenzo C M, Kim S M, Capuzzi D M. The role of nuclear medicine in the evaluation of complex regional pain syndrome type I.  Clin Nucl Med. 2005;  30(6) 400-407
  • 49 Goodin G S, Shulkin B L, Kaufman R A, McCarville M B. PET/CT characterization of fibroosseous defects in children: 18F-FDG uptake can mimic metastatic disease.  AJR Am J Roentgenol. 2006;  187(4) 1124-1128
  • 50 Aoki J, Watanabe H, Shinozaki T et al.. FDG PET of primary benign and malignant bone tumors: standardized uptake value in 52 lesions.  Radiology. 2001;  219(3) 774-777
  • 51 Schulte M, Brecht-Krauss D, Heymer B et al.. Grading of tumors and tumorlike lesions of bone: evaluation by FDG PET.  J Nucl Med. 2000;  41(10) 1695-1701
  • 52 Tse W L, Hung L K, Law B, Ho P C. Enhanced localization of osteoid osteoma with radiolabeling and intraoperative gamma counter guidance: a case report.  J Hand Surg [Am]. 2003;  28(4) 699-703
  • 53 Klonecke A S, Licho R, McDougall I R. A technique for intraoperative bone scintigraphy. A report of 17 cases.  Clin Nucl Med. 1991;  16(7) 482-486
  • 54 Lim C H, Park Y H, Lee S Y, Chung S K. F-18 FDG uptake in the nidus of an osteoid osteoma.  Clin Nucl Med. 2007;  32(8) 628-630
  • 55 Azouz E M, Saigal G, Rodriguez M M, Podda A. Langerhans' cell histiocytosis: pathology, imaging and treatment of skeletal involvement.  Pediatr Radiol. 2005;  35(2) 103-115
  • 56 Dogan A S, Conway J J, Miller J H, Grier D, Bhattathiry M M, Mitchell C S. Detection of bone lesions in Langerhans cell histiocytosis: complementary roles of scintigraphy and conventional radiography.  J Pediatr Hematol Oncol. 1996;  18(1) 51-58
  • 57 Kaste S C, Rodriguez-Galindo C, McCarville M E, Shulkin B L. PET-CT in pediatric Langerhans cell histiocytosis.  Pediatr Radiol. 2007;  37(7) 615-622
  • 58 Phillips M, Allen C, Gerson P, McClain K. Comparison of FDG-PET scans to conventional radiography and bone scans in management of Langerhans cell histiocytosis.  Pediatr Blood Cancer. 2009;  52(1) 97-101
  • 59 Zhibin Y, Quanyong L, Libo C et al.. The role of radionuclide bone scintigraphy in fibrous dysplasia of bone.  Clin Nucl Med. 2004;  29(3) 177-180
  • 60 Bonekamp D, Jacene H, Bartelt D, Aygun N. Conversion of FDG PET activity of fibrous dysplasia of the skull late in life mimicking metastatic disease.  Clin Nucl Med. 2008;  33(12) 909-911
  • 61 Iagaru A, Henderson R. PET/CT follow-up in nonossifying fibroma.  AJR Am J Roentgenol. 2006;  187(3) 830-832
  • 62 Eary J F, O'Sullivan F, Powitan Y et al.. Sarcoma tumor FDG uptake measured by PET and patient outcome: a retrospective analysis.  Eur J Nucl Med Mol Imaging. 2002;  29(9) 1149-1154
  • 63 Brenner W, Bohuslavizki K H, Eary J F. PET imaging of osteosarcoma.  J Nucl Med. 2003;  44(6) 930-942
  • 64 Franzius C, Daldrup-Link H E, Sciuk J et al.. FDG-PET for detection of pulmonary metastases from malignant primary bone tumors: comparison with spiral CT.  Ann Oncol. 2001;  12(4) 479-486
  • 65 Costelloe C M, Macapinlac H A, Madewell J E et al.. 18F-FDG PET/CT as an indicator of progression-free and overall survival in osteosarcoma.  J Nucl Med. 2009;  50(3) 340-347
  • 66 Nair N. Bone scanning in Ewing's sarcoma.  J Nucl Med. 1985;  26(4) 349-352
  • 67 Ozcan Z, Burak Z, Kumanlioğlu K et al.. Assessment of chemotherapy-induced changes in bone sarcomas: clinical experience with 99Tcm-MDP three-phase dynamic bone scintigraphy.  Nucl Med Commun. 1999;  20(1) 41-48
  • 68 Kleis M, Daldrup-Link H, Matthay K et al.. Diagnostic value of PET/CT for the staging and restaging of pediatric tumors.  Eur J Nucl Med Mol Imaging. 2009;  36(1) 23-36
  • 69 Franzius C, Sciuk J, Daldrup-Link H E, Jürgens H, Schober O. FDG-PET for detection of osseous metastases from malignant primary bone tumours: comparison with bone scintigraphy.  Eur J Nucl Med. 2000;  27(9) 1305-1311
  • 70 Hawkins D S, Rajendran J G, Conrad III E U, Bruckner J D, Eary J F. Evaluation of chemotherapy response in pediatric bone sarcomas by [F-18]-fluorodeoxy-D-glucose positron emission tomography.  Cancer. 2002;  94(12) 3277-3284
  • 71 Arush M W, Israel O, Postovsky S et al.. Positron emission tomography/computed tomography with 18fluoro-deoxyglucose in the detection of local recurrence and distant metastases of pediatric sarcoma.  Pediatr Blood Cancer. 2007;  49(7) 901-905
  • 72 Gerth H U, Juergens K U, Dirksen U, Gerss J, Schober O, Franzius C. Significant benefit of multimodal imaging: PET/CT compared with PET alone in staging and follow-up of patients with Ewing tumors.  J Nucl Med. 2007;  48(12) 1932-1939
  • 73 Kushner B H. Neuroblastoma: a disease requiring a multitude of imaging studies.  J Nucl Med. 2004;  45(7) 1172-1188
  • 74 Shulkin B L, Wieland D M, Baro M E et al.. PET hydroxyephedrine imaging of neuroblastoma.  J Nucl Med. 1996;  37(1) 16-21
  • 75 Tzen K Y, Wang LY,, Lu My. Characterization of neuroblastic tumors using F-18-DOPA PET [abstract].  J Nucl Med. 2007;  48(suppl 2) 117P
  • 76 Mulligan M E, McRae G A, Murphey M D. Imaging features of primary lymphoma of bone.  AJR Am J Roentgenol. 1999;  173(6) 1691-1697
  • 77 Bernard E J, Nicholls W D, Howman-Giles R B, Kellie S J, Uren R F. Patterns of abnormality on bone scans in acute childhood leukemia.  J Nucl Med. 1998;  39(11) 1983-1986
  • 78 Shalaby-Rana E, Majd M. (99m)Tc-MDP scintigraphic findings in children with leukemia: value of early and delayed whole-body imaging.  J Nucl Med. 2001;  42(6) 878-883
  • 79 Hickeson M P. Soft tissue sarcomas. In: Charron M Practical Pediatric PET Imaging. New York, NY; Springer 2006: 302-311
  • 80 Klem M L, Grewal R K, Wexler L H, Schöder H, Meyers P A, Wolden S L. PET for staging in rhabdomyosarcoma: an evaluation of PET as an adjunct to current staging tools.  J Pediatr Hematol Oncol. 2007;  29(1) 9-14
  • 81 McCarville M B, Christie R, Daw N C, Spunt S L, Kaste S C. PET/CT in the evaluation of childhood sarcomas.  AJR Am J Roentgenol. 2005;  184(4) 1293-1304
  • 82 Tateishi U, Hosono A, Makimoto A et al.. Comparative study of FDG PET/CT and conventional imaging in the staging of rhabdomyosarcoma.  Ann Nucl Med. 2009;  23(2) 155-161

Amer ShammasM.D. 

Department of Diagnostic Imaging, Division of Nuclear Medicine, The Hospital for Sick Children, University of Toronto

555 University Ave., Toronto, Ontario, Canada M5G 1X8

Email: amershammas@yahoo.com

    >