Neuropediatrics 2008; 39(5): 252-258
DOI: 10.1055/s-0029-1202284
Original Article

© Georg Thieme Verlag KG Stuttgart · New York

(Re-)Organization of Basal Ganglia in Congenital Hemiparesis with Ipsilateral Cortico-spinal Projections

H. Juenger 1 , 2 , W. Grodd 2 , I. Krägeloh-Mann 1 , M. Staudt 1 , 2
  • 1Department of Pediatric Neurology and Developmental Medicine, University Children's Hospital, Tübingen, Germany
  • 2Section Experimental MR of the CNS, Department of Neuroradiology, Radiological Clinic, University Hospital, Tübingen, Germany
Further Information

Publication History

received 16.06.2008

accepted 30.12.2008

Publication Date:
17 March 2009 (online)

Abstract

In congenital hemiparesis after pre- or perinatally acquired unilateral brain lesions, many patients control their paretic hand via ipsilateral cortico-spinal projections from the contralesional hemisphere. In order to clarify the pattern of basal ganglia activation in case of such a shift of the primary motor cortical representation (M1) of the paretic hand to the contralesional hemisphere, fMRI was performed in eight patients with congenital hemiparesis due to unilateral periventricular white matter lesions and ipsilateral corticospinal projections to the paretic hand (as determined by focal transcranial magnetic stimulation). FMRI during active movements of the paretic hand yielded basal ganglia activation in the ipsilateral (=contralesional) hemisphere, but not in the contralateral (lesioned) hemisphere. Thus, (re-)organization in congenital hemiparesis with ipsilateral cortico-spinal projections includes, in addition to the ipsilateral primary motor cortex (M1), also the ipsilateral basal ganglia – in contrast to the primary somatosensory cortex (S1), which is typically preserved in the affected hemisphere.

References

  • 1 Boecker H, Jankowski J, Ditter P. et al . A role of the basal ganglia and midbrain nuclei for initiation of motor sequences.  Neuroimage. 2008;  39 1356-1369
  • 2 Cans C, Dolk H, Platt MJ. et al . Recommendations from the SCPE collaborative group for defining and classifying cerebral palsy.  Dev Med Child Neurol. 2007;  109 35-38
  • 3 Carr LJ, Harrison LM, Evans AL. et al . Patterns of central motor reorganization in hemiplegic cerebral palsy.  Brain. 1993;  116 1223-1247
  • 4 Chan RC, Rao H, Chen EE. et al . The neural basis of motor sequencing: an fMRI study of healthy subjects.  Neurosci Lett. 2006;  398 189-194
  • 5 DeLong MR, Wichmann T. Circuits and circuit disorders of the basal ganglia.  Arch Neurol. 2007;  64 20-24
  • 6 Eliasson AC, Krumlinde-Sundholm L, Rösblad B. et al . The Manual Ability Classification System (MACS) for children with cerebral palsy: scale development and evidence of validity and reliability.  Dev Med Child Neurol. 2006;  48 549-554
  • 7 Elsinger CL, Harrington DL, Rao SM. From preparation to online control: reappraisal of neural circuitry mediating internally generated and externally guided actions.  Neuroimage. 2006;  31 1177-1187
  • 8 Eyre JA, Taylor JP, Villagra F. et al . Evidence of activity-dependent withdrawal of corticospinal projections during human development.  Neurology. 2001;  57 1543-1554
  • 9 Farmer SF, Harrison LM, Ingram DA. et al . Plasticity of central motor pathways in children with hemiplegic cerebral palsy.  Neurology. 1991;  41 1505-1510
  • 10 Grodd W, Hülsmann E, Lotze M. et al . Sensorimotor mapping of the human cerebellum: fMRI evidence of somatotopic organization.  Hum Brain Mapp. 2001;  13 55-73
  • 11 Groenewegen HJ. The basal ganglia and motor control.  Neural Plast. 2003;  10 107-120
  • 12 Guzzetta A, Staudt M, Petacchi E. et al . Brain representation of active and passive hand movements in children.  Pediatr Res. 2007;  61 485-490
  • 13 Juenger H, Linder-Lucht M, Walther M. et al . Cortical neuromodulation by constraint-induced movement therapy in congenital hemiparesis: an fMRI study.  Neuropediatrics. 2007;  38 130-136
  • 14 Krägeloh-Mann I, Helber A, Mader I. et al . Bilateral lesions of thalamus and basal ganglia: origin and outcome.  Dev Med Child Neurol. 2002;  44 477-484
  • 15 Krageloh-Mann I. Imaging of early brain injury and cortical plasticity.  Exp Neurol. 2004;  190 84-90
  • 16 Lehéricy S, Bardinet E, Tremblay L. et al . Motor control in basal ganglia circuits using fMRI and brain atlas approaches.  Cereb Cortex. 2006;  16 149-161
  • 17 Lidzba K, Wilke M, Staudt M. et al . Reorganization of the cerebro-cerebellar network of language production in patients with congenital left-hemispheric brain lesions.  Brain Lang. 2007;  , in press (available online via Brain Lang Homepage)
  • 18 Mall V, Linder M, Herpers M. et al . Recruitment of the sensorimotor cortex – a developmental fMRI study.  Neuropediatrics. 2005;  36 373-379
  • 19 MacCormick DA. Motor control. The cerebellar symphony.  Nature. 1995;  30 412-413
  • 20 Reichenbach JR, Feiwell R, Kuppusamy K. et al . Functional magnetic resonance imaging of the basal ganglia and cerebellum using a simple motor paradigm.  Magn Reson Imaging. 1998;  16 281-287
  • 21 Scholz VH, Flaherty AW, Kraft E. et al . Laterality, somatotopy and reproducibility of the basal ganglia and motor cortex during motor tasks.  Brain Res. 2000;  879 204-215
  • 22 Seelos KC, Bucher SF, Stehling MK. et al . Functional magnetic resonance tomography of the basal ganglia. Use of FLASH sequences for mapping activity with BOLD contrast ane high resolution.  Radiologe. 1995;  35 263-266
  • 23 Staudt M, Grodd W, Niemann G. et al . Early left periventricular brain lesions induce right hemispheric organization of speech.  Neurology. 2001;  57 122-125
  • 24 Staudt M, Lidzba K, Grodd W. et al . Right-hemispheric organization of language following early left-sided brain lesions: functional MRI topography.  Neuroimage. 2002;  16 954-967
  • 25 Staudt M, Grodd W, Gerloff C. et al . Two types of ipsilateral reorganization in congenital hemiparesis: a TMS and fMRI study.  Brain. 2002;  125 2222-2237
  • 26 Staudt M, Gerloff C, Grodd W. et al . Reorganization in congenital hemiparesis acquired at different gestational ages.  Ann Neurol. 2004;  56 854-863
  • 27 Staudt M, Braun C, Gerloff C. et al . Developing somatosensory projections bypass periventricular brain lesions.  Neurology. 2006;  67 522-525
  • 28 Takanashi J, Barkovich AJ, Ferriero DM. et al . Widening spectrum of congenital hemiplegia: Periventricular venous infarction in term neonates.  Neurology. 2003;  61 531-533
  • 29 Wilke M, Staudt M, Juenger H. et al . Somatosensory system in two types of motor reorganization in congenital hemiparesis: topography & function.  Hum Brain Mapp. 2008;  , in press (available online via Hum Brain Mapp Homepage)

Correspondence

Dr. H. Juenger

Department of Pediatric Neurology

University Children's Hospital

Hoppe-Seyler-Str. 1

72076 Tübingen

Germany

Phone: +49/7071/298 14 48

Fax: +49/7071/295 47 3

Email: Hendrik.Juenger@med.uni-tuebingen.de

    >