Semin Neurol 2008; 28(4): 484-494
DOI: 10.1055/s-0028-1083696
© Thieme Medical Publishers

Neuroimaging in Patients with Gliomas

Roland T. Ullrich1 , Lutz W. Kracht1 , Andreas H. Jacobs1
  • 1Laboratory for Gene Therapy and Molecular Imaging, Max Planck Institute for Neurological Research with Klaus-Joachim-Zülch-Laboratories, Center for Molecular Medicine (CMMC), University of Cologne and Department of Neurology at Klinikum Fulda, Germany
Further Information

Publication History

Publication Date:
08 October 2008 (online)

ABSTRACT

Improvements of radionuclide and magnetic resonance-based imaging modalities over the past decade have enabled clinicians to noninvasively assess the dynamics of disease-specific processes at the molecular level in humans. This article will provide an overview of the recent advances in multimodal molecular neuroimaging in patients with primary brain tumors. To date, a range of complementary imaging parameters have been established in the diagnosis of brain tumors. Magnetic resonance imaging (MRI) provides mostly morphological and functional information such as tumor localization, vascular permeability, cell density, and tumor perfusion. The use of positron emission tomography (PET) enables the assessment of molecular processes, such as glucose consumption, expression of nucleoside and amino acid transporters, as well as alterations of DNA and protein synthesis. Taken together, MRI and PET give complementary information about tumor biology and activity, providing an improved understanding about the kinetics of tumor growth.

REFERENCES

  • 1 Louis D N, Ohgaki H, Wiestler O D et al.. The 2007 WHO classification of tumours of the central nervous system.  Acta Neuropathol. 2007;  114 97-109
  • 2 Watanabe K, Sato K, Biernat W et al.. Incidence and timing of p53 mutations during astrocytoma progression in patients with multiple biopsies.  Clin Cancer Res. 1997;  3 523-530
  • 3 Bogler O, Huang H J, Kleihues P, Cavenee W K. The p53 gene and its role in human brain tumors.  Glia. 1995;  15 308-327
  • 4 Watanabe T, Katayama Y, Yoshino A, Komine C, Yokoyama T. Deregulation of the TP53/p14ARF tumor suppressor pathway in low-grade diffuse astrocytomas and its influence on clinical course.  Clin Cancer Res. 2003;  9 4884-4890
  • 5 Momand J, Zambetti G P, Olson D C, George D, Levine A J. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation.  Cell. 1992;  69 1237-1245
  • 6 Kamijo T, Weber J D, Zambetti G, Zindy F, Roussel M F, Sherr C J. Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2.  Proc Natl Acad Sci U S A. 1998;  95 8292-8297
  • 7 Ohgaki H, Dessen P, Jourde B et al.. Genetic pathways to glioblastoma: a population-based study.  Cancer Res. 2004;  64 6892-6899
  • 8 Cairncross J G, Ueki K, Zlatescu M C et al.. Specific genetic predictors of chemotherapeutic response and survival in patients with anaplastic oligodendrogliomas.  J Natl Cancer Inst. 1998;  90 1473-1479
  • 9 Mellinghoff I K, Wang M Y, Vivanco I et al.. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors.  N Engl J Med. 2005;  353 2012-2024
  • 10 Scott J N, Brasher P M, Sevick R J, Rewcastle N B, Forsyth P A. How often are nonenhancing supratentorial gliomas malignant? A population study.  Neurology. 2002;  59 947-949
  • 11 Sugahara T, Korogi Y, Kochi M et al.. Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas.  J Magn Reson Imaging. 1999;  9 53-60
  • 12 Pauleit D, Langen K J, Floeth F et al.. Can the apparent diffusion coefficient be used as a noninvasive parameter to distinguish tumor tissue from peritumoral tissue in cerebral gliomas?.  J Magn Reson Imaging. 2004;  20 758-764
  • 13 Sugahara T, Korogi Y, Kochi M et al.. Correlation of MR imaging-determined cerebral blood volume maps with histologic and angiographic determination of vascularity of gliomas.  AJR Am J Roentgenol. 1998;  171 1479-1486
  • 14 Aronen H J, Gazit I E, Louis D N et al.. Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings.  Radiology. 1994;  191 41-51
  • 15 Maia Jr A C, Malheiros S M, da Rocha A J et al.. MR cerebral blood volume maps correlated with vascular endothelial growth factor expression and tumor grade in nonenhancing gliomas.  AJNR Am J Neuroradiol. 2005;  26 777-783
  • 16 Hakyemez B, Erdogan C, Bolca N et al.. Evaluation of different cerebral mass lesions by perfusion-weighted MR imaging.  J Magn Reson Imaging. 2006;  24 817-824
  • 17 Roberts H C, Roberts T P, Brasch R C, Dillon W P. Quantitative measurement of microvascular permeability in human brain tumors achieved using dynamic contrast-enhanced MR imaging: correlation with histologic grade.  AJNR Am J Neuroradiol. 2000;  21 891-899
  • 18 Law M, Yang S, Babb J S et al.. Comparison of cerebral blood volume and vascular permeability from dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade.  AJNR Am J Neuroradiol. 2004;  25 746-755
  • 19 Law M, Yang S, Wang H et al.. Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging.  AJNR Am J Neuroradiol. 2003;  24 1989-1998
  • 20 Moller-Hartmann W, Herminghaus S, Krings T et al.. Clinical application of proton magnetic resonance spectroscopy in the diagnosis of intracranial mass lesions.  Neuroradiology. 2002;  44 371-381
  • 21 Ishimaru H, Morikawa M, Iwanaga S et al.. Differentiation between high-grade glioma and metastatic brain tumor using single-voxel proton MR spectroscopy.  Eur Radiol. 2001;  11 1784-1791
  • 22 Oshiro S, Tsugu H, Komatsu F et al.. Quantitative assessment of gliomas by proton magnetic resonance spectroscopy.  Anticancer Res. 2007;  27 3757-3763
  • 23 Zhao S, Kuge Y, Mochizuki T et al.. Biologic correlates of intratumoral heterogeneity in 18F-FDG distribution with regional expression of glucose transporters and hexokinase-II in experimental tumor.  J Nucl Med. 2005;  46 675-682
  • 24 Bos R, van Der Hoeven J J, van Der Wall E et al.. Biologic correlates of (18)fluorodeoxyglucose uptake in human breast cancer measured by positron emission tomography.  J Clin Oncol. 2002;  20 379-387
  • 25 Herholz K, Pietrzyk U, Voges J et al.. Correlation of glucose consumption and tumor cell density in astrocytomas. A stereotactic PET study.  J Neurosurg. 1993;  79 853-858
  • 26 Herholz K, Heindel W, Luyten P R et al.. In vivo imaging of glucose consumption and lactate concentration in human gliomas.  Ann Neurol. 1992;  31 319-327
  • 27 Di Chiro G, DeLaPaz R L, Brooks R A et al.. Glucose utilization of cerebral gliomas measured by [18F] fluorodeoxyglucose and positron emission tomography.  Neurology. 1982;  32 1323-1329
  • 28 Alavi J B, Alavi A, Chawluk J et al.. Positron emission tomography in patients with glioma. A predictor of prognosis.  Cancer. 1988;  62 1074-1078
  • 29 Jacobs A H, Thomas A, Kracht L W et al.. 18F-fluoro-L-thymidine and 11C-methylmethionine as markers of increased transport and proliferation in brain tumors.  J Nucl Med. 2005;  46 1948-1958
  • 30 Jager P L, Vaalburg W, Pruim J et al.. Radiolabelled amino acids: basic aspects and clinical applications in oncology.  J Nucl Med. 2001;  42 432-445
  • 31 Pauleit D, Floeth F, Tellmann L et al.. Comparison of O-(2–18F-fluoroethyl)-L-tyrosine PET and 3–123I-iodo-alpha-methyl-L-tyrosine SPECT in brain tumors.  J Nucl Med. 2004;  45 374-381
  • 32 Miyagawa T, Oku T, Uehara H et al.. “Facilitated” amino acid transport is upregulated in brain tumors.  J Cereb Blood Flow Metab. 1998;  18 500-509
  • 33 Bergstrom M, Lundqvist H, Ericson K et al.. Comparison of the accumulation kinetics of L-(methyl-11C)-methionine and D-(methyl-11C)-methionine in brain tumors studied with positron emission tomography.  Acta Radiol. 1987;  28 225-229
  • 34 Van Laere K, Ceyssens S, Van Calenbergh F et al.. Direct comparison of 18F-FDG and 11C-methionine PET in suspected recurrence of glioma: sensitivity, inter-observer variability and prognostic value.  Eur J Nucl Med Mol Imaging. 2005;  32 39-51
  • 35 Galldiks N, Kracht L W, Burghaus L et al.. Use of 11C-methionine PET to monitor the effects of temozolomide chemotherapy in malignant gliomas.  Eur J Nucl Med Mol Imaging. 2006;  33 516-524
  • 36 Thiel A, Pietrzyk U, Sturm V et al.. Enhanced accuracy in differential diagnosis of radiation necrosis by positron emission tomography–magnetic resonance imaging coregistration: technical case report.  Neurosurgery. 2000;  46 232-234
  • 37 Kracht L W, Miletic H, Busch S et al.. Delineation of brain tumor extent with [11C]L-methionine positron emission tomography: local comparison with stereotactic histopathology.  Clin Cancer Res. 2004;  10 7163-7170
  • 38 Kracht L W, Friese M, Herholz K et al.. Methyl-[11C]- l-methionine uptake as measured by positron emission tomography correlates to microvessel density in patients with glioma.  Eur J Nucl Med Mol Imaging. 2003;  30 868-873
  • 39 Sato N, Suzuki M, Kuwata N et al.. Evaluation of the malignancy of glioma using 11C-methionine positron emission tomography and proliferating cell nuclear antigen staining.  Neurosurg Rev. 1999;  22 210-214
  • 40 Sasaki M, Kuwabara Y, Yoshida T et al.. A comparative study of thallium-201 SPECT, carbon-11 methionine PET and fluorine-18 fluorodeoxyglucose PET for the differentiation of astrocytic tumours.  Eur J Nucl Med. 1998;  25 1261-1269
  • 41 Herholz K, Holzer T, Bauer B et al.. 11C-methionine PET for differential diagnosis of low-grade gliomas.  Neurology. 1998;  50 1316-1322
  • 42 Shields A F, Grierson J R, Dohmen B M et al.. Imaging proliferation in vivo with [F-18]FLT and positron emission tomography.  Nat Med. 1998;  4 1334-1336
  • 43 Sherley J L, Kelly T J. Regulation of human thymidine kinase during the cell cycle.  J Biol Chem. 1988;  263 8350-8358
  • 44 Vesselle H, Grierson J, Muzi M et al.. In vivo validation of 3′deoxy-3′-[(18)F]fluorothymidine ([(18)F]FLT) as a proliferation imaging tracer in humans: correlation of [(18)F]FLT uptake by positron emission tomography with Ki-67 immunohistochemistry and flow cytometry in human lung tumors.  Clin Cancer Res. 2002;  8 3315-3323
  • 45 Wells P, Gunn R N, Alison M et al.. Assessment of proliferation in vivo using 2-[(11)C]thymidine positron emission tomography in advanced intra-abdominal malignancies.  Cancer Res. 2002;  62 5698-5702
  • 46 Buck A K, Bommer M, Stilgenbauer S et al.. Molecular imaging of proliferation in malignant lymphoma.  Cancer Res. 2006;  66 11055-11061
  • 47 Buck A K, Schirrmeister H, Hetzel M et al.. 3-deoxy-3-[(18)F]fluorothymidine-positron emission tomography for noninvasive assessment of proliferation in pulmonary nodules.  Cancer Res. 2002;  62 3331-3334
  • 48 Wagner M, Seitz U, Buck A et al.. 3′-[18F]fluoro-3′-deoxythymidine ([18F]-FLT) as positron emission tomography tracer for imaging proliferation in a murine B-Cell lymphoma model and in the human disease.  Cancer Res. 2003;  63 2681-2687
  • 49 Ullrich R, Backes H, Li H F et al.. Glioma proliferation as assessed by FLT-PET in patients with newly diagnosed high grade glioma.  Clin Cancer Res. 2008;  14 2049-2055
  • 50 Levivier M, Goldman S, Pirotte B et al.. Diagnostic yield of stereotactic brain biopsy guided by positron emission tomography with [18F]fluorodeoxyglucose.  J Neurosurg. 1995;  82 445-452
  • 51 Pirotte B, Goldman S, Massager N et al.. Combined use of 18F-fluorodeoxyglucose and 11C-methionine in 45 positron emission tomography-guided stereotactic brain biopsies.  J Neurosurg. 2004;  101 476-483
  • 52 Gumprecht H, Grosu A L, Souvatsoglou M et al.. 11C-Methionine positron emission tomography for preoperative evaluation of suggestive low-grade gliomas.  Zentralbl Neurochir. 2007;  68 19-23
  • 53 Jacobs A, Voges J, Reszka R et al.. Positron-emission tomography of vector-mediated gene expression in gene therapy for gliomas.  Lancet. 2001;  358 727-729
  • 54 Sequist L V, Bell D W, Lynch T J, Haber D A. Molecular predictors of response to epidermal growth factor receptor antagonists in non–small-cell lung cancer.  J Clin Oncol. 2007;  25 587-595
  • 55 Lee K C, Hall D E, Hoff B A et al.. Dynamic imaging of emerging resistance during cancer therapy.  Cancer Res. 2006;  66 4687-4692
  • 56 Moffat B A, Chenevert T L, Lawrence T S et al.. Functional diffusion map: a noninvasive MRI biomarker for early stratification of clinical brain tumor response.  Proc Natl Acad Sci U S A. 2005;  102 5524-5529
  • 57 Sinha S, Bastin M E, Wardlaw J M, Armitage P A, Whittle I R. Effects of dexamethasone on peritumoural oedematous brain: a DT-MRI study.  J Neurol Neurosurg Psychiatry. 2004;  75 1632-1635
  • 58 Gossmann A, Helbich T H, Kuriyama N et al.. Dynamic contrast-enhanced magnetic resonance imaging as a surrogate marker of tumor response to anti-angiogenic therapy in a xenograft model of glioblastoma multiforme.  J Magn Reson Imaging. 2002;  15 233-240
  • 59 Kiessling F, Greschus S, Lichy M P et al.. Volumetric computed tomography (VCT): a new technology for noninvasive, high-resolution monitoring of tumor angiogenesis.  Nat Med. 2004;  10 1133-1138
  • 60 Batchelor T T, Sorensen A G, di Tomaso E et al.. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients.  Cancer Cell. 2007;  11 83-95
  • 61 Kim E E, Chung S K, Haynie T P et al.. Differentiation of residual or recurrent tumors from post-treatment changes with F-18 FDG PET.  Radiographics. 1992;  12 269-279
  • 62 Wurker M, Herholz K, Voges J et al.. Glucose consumption and methionine uptake in low-grade gliomas after iodine-125 brachytherapy.  Eur J Nucl Med. 1996;  23 583-586
  • 63 Chao S T, Suh J H, Raja S, Lee S Y, Barnett G. The sensitivity and specificity of FDG PET in distinguishing recurrent brain tumor from radionecrosis in patients treated with stereotactic radiosurgery.  Int J Cancer. 2001;  96 191-197
  • 64 Reinhardt M J, Kubota K, Yamada S, Iwata R, Yaegashi H. Assessment of cancer recurrence in residual tumors after fractionated radiotherapy: a comparison of fluorodeoxyglucose, L-methionine and thymidine.  J Nucl Med. 1997;  38 280-287
  • 65 Chen W, Delaloye S, Silverman D H et al.. Predicting treatment response of malignant gliomas to bevacizumab and irinotecan by imaging proliferation with [18F] fluorothymidine positron emission tomography: a pilot study.  J Clin Oncol. 2007;  25 4714-4721
  • 66 Herrmann K, Wieder H A, Buck A K et al.. Early response assessment using 3′-deoxy-3′-[18F]fluorothymidine-positron emission tomography in high-grade non-Hodgkin's lymphoma.  Clin Cancer Res. 2007;  13 3552-3558
  • 67 Muzi M, Spence A M, O'Sullivan F et al.. Kinetic analysis of 3′-deoxy-3′-18F-fluorothymidine in patients with gliomas.  J Nucl Med. 2006;  47 1612-1621
  • 68 Schiepers C, Chen W, Dahlbom M et al.. 18F-fluorothymidine kinetics of malignant brain tumors.  Eur J Nucl Med Mol Imaging. 2007;  34 1003-1011
  • 69 Jacobs A H, Rueger M A, Winkeler A et al.. Imaging-guided gene therapy of experimental gliomas.  Cancer Res. 2007;  67 1706-1715
  • 70 Winkeler A, Sena-Esteves M, Paulis L E et al.. Switching on the lights for gene therapy.  PLoS ONE. 2007;  2 e528
  • 71 McAteer M A, Sibson N R, von Zur Muhlen C et al.. In vivo magnetic resonance imaging of acute brain inflammation using microparticles of iron oxide.  Nat Med. 2007;  13 1253-1258
  • 72 Mulder W J, van der Schaft D W, Hautvast P A et al.. Early in vivo assessment of angiostatic therapy efficacy by molecular MRI.  FASEB J. 2007;  21 378-383
  • 73 Beer A J, Lorenzen S, Metz S et al.. Comparison of integrin alphaVbeta3 expression and glucose metabolism in primary and metastatic lesions in cancer patients: a PET study using 18F-galacto-RGD and 18F-FDG.  J Nucl Med. 2008;  49 22-29
  • 74 Jacobs A. PET in Gliomas. Stuttgart; Thieme 2003: 72-76
  • 75 Kracht L, Jacobs A, Heiss W. Metabolic Imaging. 2nd ed. Stuttgart; Thieme 2008: 70-78

Professor Dr. Andreas H JacobsM.D. 

Laboratory for Gene Therapy and Molecular Imaging, MPI for Neurological Research, Gleuelerstr. 50

50931 Cologne, Germany

Email: Andreas.Jacobs@nf.mpg.de

    >