Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Particle therapy in prostate cancer: a review

Abstract

While dose escalation is proving important to achieve satisfactory long-term outcomes in prostate cancer, the optimal radiation modality to deliver the treatment is still a topic of debate. Charged particle beams can offer improved dose distributions to the target volume as compared to conventional 3D-conformal radiotherapy, with better sparing of surrounding healthy tissues. Exquisite dose distributions, with the fulfillment of dose–volume constraints to normal tissues, however, can also be achieved with photon-based intensity-modulated techniques. This review summarizes the literature on the use of particle therapy in prostate cancer and attempts to put in perspective its relative merits compared to current photon-based radiotherapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hanks GE, Hanlon AL, Epstein B, Horwitz EM . Dose response in prostate cancer with 8–12 years’ follow-up. Int J Radiat Oncol Biol Phys 2002; 54: 427–435.

    Article  Google Scholar 

  2. Pollack A, Zagars GK, Starkschall G, Antolak JA, Lee JJ, Huang E et al. Prostate cancer radiation dose response: results of the MD Anderson phase III randomized trial. Int J Radiat Oncol Biol Phys 2002; 53: 1097–1105.

    Article  Google Scholar 

  3. Zelefsky MJ, Fuks Z, Hunt M, Yamada Y, Marion C, Ling CC et al. High-dose intensity modulated radiation therapy for prostate cancer: early toxicity and biochemical outcome in 772 patients. Int J Radiat Oncol Biol Phys 2002; 53: 1111–1116.

    Article  Google Scholar 

  4. Zelefsky MJ, Fuks Z, Hunt M, Lee HJ, Lombardi D, Ling CC et al. High dose radiation delivered by intensity modulated conformal radiotherapy improves the outcome of localized prostate cancer. J Urol 2001; 166: 876–881.

    Article  CAS  Google Scholar 

  5. Zietman AL, Desilvio ML, Slater JD, Rossi Jr CJ, Miller DW, Adams JA et al. Comparison of conventional-dose vs high-dose conformal radiation therapy in clinically localized adenocarcinoma of the prostate: a randomized controlled trial. JAMA 2005; 294: 1233–1239.

    Article  CAS  Google Scholar 

  6. DeWeese TL, Song DY . Radiation dose escalation as treatment for clinically localized prostate cancer: is more really better? JAMA 2005; 294: 1274–1276.

    Article  CAS  Google Scholar 

  7. Cheung R, Tucker SL, Lee AK, de Crevoisier R, Dong L, Kamat A et al. Dose-response characteristics of low- and intermediate-risk prostate cancer treated with external beam radiotherapy. Int J Radiat Oncol Biol Phys 2005; 61: 993–1002.

    Article  Google Scholar 

  8. Morris DE, Emami B, Mauch PM, Konski AA, Tao ML, Ng AK et al. Evidence-based review of three-dimensional conformal radiotherapy for localized prostate cancer: an ASTRO outcomes initiative. Int J Radiat Oncol Biol Phys 2005; 62: 3–19.

    Article  Google Scholar 

  9. Kuban D, Pollack A, Huang E, Levy L, Dong L, Starkschall G et al. Hazards of dose escalation in prostate cancer radiotherapy. Int J Radiat Oncol Biol Phys 2003; 57: 1260–1268.

    Article  Google Scholar 

  10. Michalski JM, Winter K, Purdy JA, Parliament M, Wong H, Perez CA et al. Toxicity after three-dimensional radiotherapy for prostate cancer on RTOG 9406 dose Level V. Int J Radiat Oncol Biol Phys 2005; 62: 706–713.

    Article  Google Scholar 

  11. Pollack A, Hanlon AL, Horwitz EM, Feigenberg SJ, Konski AA, Movsas B et al. Dosimetry and preliminary acute toxicity in the first 100 men treated for prostate cancer on a randomized hypofractionation dose escalation trial. Int J Radiat Oncol Biol Phys 2006; 64: 518–526.

    Article  Google Scholar 

  12. Bey P, Carrie C, Beckendorf V, Ginestet C, Aletti P, Madelis G et al. Dose escalation with 3D-CRT in prostate cancer: French study of dose escalation with conformal 3D radiotherapy in prostate cancer-preliminary results. Int J Radiat Oncol Biol Phys 2000; 48: 513–517.

    Article  CAS  Google Scholar 

  13. Zelefsky MJ, Fuks Z, Happersett L, Lee HJ, Ling CC, Burman CM et al. Clinical experience with intensity modulated radiation therapy (IMRT) in prostate cancer. Radiother Oncol 2000; 55: 241–249.

    Article  CAS  Google Scholar 

  14. Teh BS, Mai WY, Augspurger ME, Uhl BM, McGary J, Dong L et al. Intensity modulated radiation therapy (IMRT) following prostatectomy: more favorable acute genitourinary toxicity profile compared to primary IMRT for prostate cancer. Int J Radiat Oncol Biol Phys 2001; 49: 465–472.

    Article  CAS  Google Scholar 

  15. Hall EJ, Wuu CS . Radiation-induced second cancers: the impact of 3D-CRT and IMRT. Int J Radiat Oncol Biol Phys 2003; 56: 83–88.

    Article  Google Scholar 

  16. Kry SF, Salehpour M, Followill DS, Stovall M, Kuban DA, White RA et al. The calculated risk of fatal secondary malignancies from intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys 2005; 62: 1195–1203.

    Article  Google Scholar 

  17. Singh AM, Gagnon G, Collins B, Niroomand-Rad A, McRae D, Zhang Y et al. Combined external beam radiotherapy and Pd-103 brachytherapy boost improves biochemical failure free survival in patients with clinically localized prostate cancer: results of a matched pair analysis. Prostate 2005; 62: 54–60.

    Article  Google Scholar 

  18. Martinez AA, Gustafson G, Gonzalez J, Armour E, Mitchell C, Edmundson G et al. Dose escalation using conformal high-dose-rate brachytherapy improves outcome in unfavorable prostate cancer. Int J Radiat Oncol Biol Phys 2002; 53: 316–327.

    Article  Google Scholar 

  19. Akakura K, Tsujii H, Morita S, Tsuji H, Yagishita T, Isaka S et al. Phase I/II clinical trials of carbon ion therapy for prostate cancer. Prostate 2004; 58: 252–258.

    Article  CAS  Google Scholar 

  20. Tsuji H, Yanagi T, Ishikawa H, Kamada T, Mizoe JE, Kanai T et al. Hypofractionated radiotherapy with carbon ion beams for prostate cancer. Int J Radiat Oncol Biol Phys 2005; 63: 1153–1160.

    Article  Google Scholar 

  21. Shimazaki J, Akakura K, Suzuki H, Ichikawa T, Tsuji H, Ishikawa H et al. Monotherapy with carbon ion radiation for localized prostate cancer. Jpn J Clin Oncol 2006; 36: 290–294.

    Article  Google Scholar 

  22. Ishikawa H, Tsuji H, Kamada T, Yanagi T, Mizoe JE, Kanai T et al. Carbon ion radiation therapy for prostate cancer: results of a prospective phase II study. Radiother Oncol 2006; 81: 57–64.

    Article  Google Scholar 

  23. Zelefsky MJ, Chan H, Hunt M, Yamada Y, Shippy AM, Amols H . Long-term outcome of high dose intensity modulated radiation therapy for patients with clinically localized prostate cancer. J Urol 2006; 176: 1415–1419.

    Article  Google Scholar 

  24. Kanai T, Matsufuji N, Miyamoto T, Mizoe J, Kamada T, Tsuji H et al. Examination of GyE system for HIMAC carbon therapy. Int J Radiat Oncol Biol Phys 2006; 64: 650–656.

    Article  Google Scholar 

  25. Duttenhaver JR, Shipley WU, Perrone T, Verhey LJ, Goitein M, Munzenrider JE et al. Protons or megavoltage X-rays as boost therapy for patients irradiated for localized prostatic carcinoma. An early phase I/II comparison. Cancer 1983; 51: 1599–1604.

    Article  CAS  Google Scholar 

  26. Shipley WU, Verhey LJ, Munzenrider JE, Suit HD, Urie MM, McManus PL et al. Advanced prostate cancer: the results of a randomized comparative trial of high dose irradiation boosting with conformal protons compared with conventional dose irradiation using photons alone. Int J Radiat Oncol Biol Phys 1995; 32: 3–12.

    Article  CAS  Google Scholar 

  27. Gardner BG, Zietman AL, Shipley WU, Skowronski UE, McManus P . Late normal tissue sequelae in the second decade after high dose radiation therapy with combined photons and conformal protons for locally advanced prostate cancer. J Urol 2002; 167: 123–126.

    Article  CAS  Google Scholar 

  28. Slater JD, Rossi Jr CJ, Yonemoto LT, Bush DA, Jabola BR, Levy RP et al. Proton therapy for prostate cancer: the initial Loma Linda University experience. Int J Radiat Oncol Biol Phys 2004; 59: 348–352.

    Article  Google Scholar 

  29. Yeboah C, Sandison GA . Optimized treatment planning for prostate cancer comparing IMPT, VHEET and 15 MV IMXT. Phys Med Biol 2002; 47: 2247–2261.

    Article  CAS  Google Scholar 

  30. Cella L, Lomax A, Miralbell R . New techniques in hadrontherapy: intensity modulated proton beams. Phys Med 2001; 17 (Suppl 1): 100–102.

    PubMed  Google Scholar 

  31. Paganetti H . Interpretation of proton relative biological effectiveness using lesion induction, lesion repair, and cellular dose distribution. Med Phys 2005; 32: 2548–2556.

    Article  CAS  Google Scholar 

  32. Bettega D, Calzolari P, Chauvel P, Courdi A, Herault J, Iborra N et al. Radiobiological studies on the 65 MeV therapeutic proton beam at Nice using human tumour cells. Int J Radiat Biol 2000; 76: 1297–1303.

    Article  CAS  Google Scholar 

  33. Wilkens JJ, Oelfke U . Optimization of radiobiological effects in intensity modulated proton therapy. Med Phys 2005; 32: 455–465.

    Article  Google Scholar 

  34. Laramore GE, Krall JM, Thomas FJ, Griffin TW, Maor MH, Hendrickson FR . Fast neutron radiotherapy for locally advanced prostate cancer: results of an RTOG randomized study. Int J Radiat Oncol Biol Phys 1985; 11: 1621–1627.

    Article  CAS  Google Scholar 

  35. Russell KJ, Caplan RJ, Laramore GE, Burnison CM, Maor MH, Taylor ME et al. Photon versus fast neutron external beam radiotherapy in the treatment of locally advanced prostate cancer: results of a randomized prospective trial. Int J Radiat Oncol Biol Phys 1994; 28: 47–54.

    Article  CAS  Google Scholar 

  36. Laramore GE . The use of neutrons in cancer therapy: a historical perspective through the modern era. Semin Oncol 1997; 24: 672–685.

    CAS  PubMed  Google Scholar 

  37. Lindsley KL, Cho P, Stelzer KJ, Koh WJ, Austin-Seymour M, Russell KJ et al. Fast neutrons in prostatic adenocarcinomas: worldwide clinical experience. Recent Results Cancer Res 1998; 150: 125–136.

    Article  CAS  Google Scholar 

  38. Scalliet PG, Remouchamps V, Lhoas F, Van GM, Curran D, Ledent T et al. A retrospective analysis of the results of p(65)+Be neutron therapy for the treatment of prostate adenocarcinoma at the cyclotron of Louvain-la-Neuve. Part I: survival and progression-free survival. Cancer Radiother 2001; 5: 262–272.

    Article  CAS  Google Scholar 

  39. Scalliet PG, Remouchamps V, Curran D, Ledent G, Wambersie A, Richard F et al. Retrospective analysis of results of p(65)+Be neutron therapy for treatment of prostate adenocarcinoma at the cyclotron of Louvain-la-Leuve. Part II: side effects and their influence on quality of life measured with QLQ-C30 of EORTC. Int J Radiat Oncol Biol Phys 2004; 58: 1549–1561.

    Article  Google Scholar 

  40. Forman JD, Yudelev M, Bolton S, Tekyi-Mensah S, Maughan R . Fast neutron irradiation for prostate cancer. Cancer Metastasis Rev 2002; 21: 131–135.

    Article  CAS  Google Scholar 

  41. Forman JD, Warmelink C, Devi S, Court W, Sharma R, Yudelev M et al. Alternating conformal neutron and photon irradiation for locally advanced adenocarcinoma of the prostate. Am J Clin Oncol 1995; 18: 231–238.

    Article  CAS  Google Scholar 

  42. Carl UM, McNally NJ, Joiner MC . The effect of mixed fractionation with X rays and neutrons on tumour growth delay and skin reactions in mice. Br J Radiol 1987; 60: 583–588.

    Article  CAS  Google Scholar 

  43. Linstadt DE, Castro JR, Phillips TL . Neon ion radiotherapy: results of the phase I/II clinical trial. Int J Radiat Oncol Biol Phys 1991; 20: 761–769.

    Article  CAS  Google Scholar 

  44. Ishikawa H, Tsuji H, Kamada T, Hirasawa N, Yanagi T, Mizoe JE et al. Risk factors of late rectal bleeding after carbon ion therapy for prostate cancer. Int J Radiat Oncol Biol Phys 2006; 66: 1084–1091.

    Article  Google Scholar 

  45. Griffin TW, Krall JM, Russell KJ, Peters LJ, Thomas FJ, Hendrickson FR et al. Fast neutron irradiation of locally advanced prostate cancer. Semin Oncol 1988; 15: 359–365.

    CAS  PubMed  Google Scholar 

  46. Laramore GE, Krall JM, Thomas FJ, Russell KJ, Maor MH, Hendrickson FR et al. Fast neutron radiotherapy for locally advanced prostate cancer. Final report of Radiation Therapy Oncology Group randomized clinical trial. Am J Clin Oncol 1993; 16: 164–167.

    Article  CAS  Google Scholar 

  47. Nikoghosyan A, Schulz-Ertner D, Didinger B, Jakel O, Zuna I, Hoss A et al. Evaluation of therapeutic potential of heavy ion therapy for patients with locally advanced prostate cancer. Int J Radiat Oncol Biol Phys 2004; 58: 89–97.

    Article  Google Scholar 

  48. Movsas B, Hanlon AL, Pinover W, Hanks GE . Is there an increased risk of second primaries following prostate irradiation? Int J Radiat Oncol Biol Phys 1998; 41: 251–255.

    Article  CAS  Google Scholar 

  49. Chrouser K, Leibovich B, Bergstralh E, Zincke H, Blute M . Bladder cancer risk following primary and adjuvant external beam radiation for prostate cancer. J Urol 2005; 174: 107–110.

    Article  Google Scholar 

  50. Brenner DJ, Curtis RE, Hall EJ, Ron E . Second malignancies in prostate carcinoma patients after radiotherapy compared with surgery. Cancer 2000; 88: 398–406.

    Article  CAS  Google Scholar 

  51. Neugut AI, Ahsan H, Robinson E, Ennis RD . Bladder carcinoma and other second malignancies after radiotherapy for prostate carcinoma. Cancer 1997; 79: 1600–1604.

    Article  CAS  Google Scholar 

  52. Shah SK, Lui PD, Baldwin DD, Ruckle HC . Urothelial carcinoma after external beam radiation therapy for prostate cancer. J Urol 2006; 175: 2063–2066.

    Article  Google Scholar 

  53. Baxter NN, Tepper JE, Durham SB, Rothenberger DA, Virnig BA . Increased risk of rectal cancer after prostate radiation: a population-based study. Gastroenterology 2005; 128: 819–824.

    Article  Google Scholar 

  54. Kendal WS, Eapen L, Macrae R, Malone S, Nicholas G . Prostatic irradiation is not associated with any measurable increase in the risk of subsequent rectal cancer. Int J Radiat Oncol Biol Phys 2006; 65: 661–668.

    Article  Google Scholar 

  55. Chandan VS, Wolsh L . Postirradiation angiosarcoma of the prostate. Arch Pathol Lab Med 2003; 127: 876–878.

    PubMed  Google Scholar 

  56. McKenzie M, MacLennan I, Kostashuk E, Bainbridge T . Postirradiation sarcoma after external beam radiation therapy for localized adenocarcinoma of the prostate: report of three cases. Urology 1999; 53: 1228.

    Article  CAS  Google Scholar 

  57. Prevost JB, Bossi A, Sciot R, Debiec-Rychter M . Post-irradiation sarcoma after external beam radiation therapy for localized adenocarcinoma of the prostate. Tumori 2004; 90: 618–621.

    Article  Google Scholar 

  58. Hall EJ . Intensity-modulated radiation therapy, protons, and the risk of second cancers. Int J Radiat Oncol Biol Phys 2006; 65: 1–7.

    Article  Google Scholar 

  59. Della Biancia C, Hunt M, Amols H . A comparison of the integral dose from 3D conformal and IMRT techniques in the treatment of prostate cancer. Med Phys 2002; 29: 1216. Ref type: Generic.

    Google Scholar 

  60. Engels H, Wambersie A . Relative biological effectiveness of neutrons for cancer induction and other late effects: a review of radiobiological data. Recent Results Cancer Res 1998; 150: 54–87.

    Article  CAS  Google Scholar 

  61. Engels H, Menzel HG, Pihet P, Wambersie A . Risk assessment for cancer induction after low- and high-LET therapeutic irradiation. Strahlenther Onkol 1999; 175 (Suppl 2): 47–51.

    Article  Google Scholar 

  62. Lundkvist J, Ekman M, Ericsson SR, Jonsson B, Glimelius B . Proton therapy of cancer: potential clinical advantages and cost-effectiveness. Acta Oncol 2005; 44: 850–861.

    Article  Google Scholar 

  63. Suit HD . Protons to replace photons in external beam radiation therapy? Clin Oncol (R Coll Radiol) 2003; 15: S29–S31.

    Article  CAS  Google Scholar 

  64. Goitein M, Jermann M . The relative costs of proton and X-ray radiation therapy. Clin Oncol (R Coll Radiol) 2003; 15: S37–S50.

    Article  CAS  Google Scholar 

  65. Turesson I, Johansson KA, Mattsson S . The potential of proton and light ion beams in radiotherapy. Acta Oncol 2003; 42: 107–114.

    Article  Google Scholar 

  66. Dahl O . Protons. A step forward or perhaps only more expensive radiation therapy? Acta Oncol 2005; 44: 798–800.

    Article  Google Scholar 

  67. Munro AJ . Particle matters. Br J Radiol 2006; 79: 276–277.

    Article  CAS  Google Scholar 

  68. Johansson B, Ridderheim M, Glimelius B . The potential of proton beam radiation therapy in prostate cancer, other urological cancers and gynaecological cancers. Acta Oncol 2005; 44: 890–895.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Greco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greco, C. Particle therapy in prostate cancer: a review. Prostate Cancer Prostatic Dis 10, 323–330 (2007). https://doi.org/10.1038/sj.pcan.4500987

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.pcan.4500987

Keywords

Search

Quick links