Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Effects of geldanamycin on HIF-1α mediated angiogenesis and invasion in prostate cancer cells

Abstract

Geldanamycin (GA), a benzoquinone ansamycin, is a naturally occurring inhibitor of heat shock protein (Hsp90), which regulates the transcription activity of hypoxia-inducible factor 1 (HIF-1α). Under hypoxia, HIF-1α is activated in tumor cells, and induces the transcription of vascular endothelial growth factor (VEGF), which is the prime regulator for angiogenesis. VEGF promotes the formation of new blood vessels by stimulating endothelial cell division and migration. This eventually forms a vascular network that allows for tumor growth and metastasis. In this study, we used GA to inhibit HIF-1α transcription function. Human prostate cancer DU-145 cells were incubated in a hypoxic chamber at 1% O2 and 37°C for different durations. Both mRNA and protein levels of HIF-1α and VEGF were upregulated under hypoxic conditions. We demonstrated that GA treatment of hypoxic DU-145 cells abolished the induction of HIF-1α protein in a time-dependent manner and decreased VEGF mRNA and its protein levels. The transient transfection of DU-145 cells with luciferase reporter gene construct (5HRE/hCMVmp-luc) showed that the transcriptional activity of HIF-1α was significantly induced in response to hypoxia, but inhibited by GA. In addition, using conditioned medium from GA-treated hypoxic cells led to a significant decrease in cell invasion in comparison with using conditioned medium from nontreated hypoxic cells. These data provide evidence for the important role of GA in inhibition of angiogenesis and also invasion mediated by HIF-1α in prostate cancer cells.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  1. Semenza GL . Targeting HIF-1 for cancer therapy. Nat Rev Cancer 2003; 3: 721–732.

    Article  CAS  Google Scholar 

  2. Powis G, Kirkpatrick L . Hypoxia inducible factor-1alpha as a cancer drug target. Mol Cancer Ther 2004; 3: 647–654.

    PubMed  CAS  Google Scholar 

  3. Gradin K, McGuire J, Wenger RH, Kvietikova I, Whitelaw ML, Toftgard R et al. Functional interference between hypoxia and dioxin signal transduction pathways: competition for recruitment of the Arnt transcription factor. Mol Cell Biol 1996; 16: 5221–5231.

    Article  CAS  Google Scholar 

  4. Semenza GL . Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology. Trends Mol Med 2001; 7: 345–350.

    Article  CAS  Google Scholar 

  5. Mazzucchelli R, Montironi R, Santinelli A, Lucarini G, Pugnaloni A, Biagini G . Vascular endothelial growth factor expression and capillary architecture in high-grade PIN and prostate cancer in untreated and androgen-ablated patients. Prostate 2000; 45: 72–79.

    Article  CAS  Google Scholar 

  6. Tennant MK, Thrasher JB, Twomey PA, Birnbaum RS, Plymate SR . Insulin-like growth factor-binding protein-2 and -3 expression in benign human prostate epithelium, prostate intraepithelial neoplasia, and adenocarcinoma of the prostate. J Clin Endocrinol Metabol 1996; 81: 411–420.

    CAS  Google Scholar 

  7. Comerford KM, Wallace TJ, Karhausen J, Louis NA, Montalto MC, Colgan SP . Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Res 2002; 62: 3387–3394.

    PubMed  CAS  Google Scholar 

  8. Hu CJ, Wang LY, Chodosh LA, Keith B, Simon MC . Differential roles of hypoxia-inducible factor 1 alpha (HIF-1 alpha) and HIF-2 alpha in hypoxic gene regulation. Mol Cellular Biol 2003; 23: 9361–9374.

    Article  CAS  Google Scholar 

  9. Wang V, Davis DA, Haque M, Huang LE, Yarchoan R . Differential gene up-regulation by hypoxia-inducible factor-1 alpha and hypoxia-inducible factor-2 alpha in HEK293T cells. Cancer Res 2005; 65: 3299–3306.

    Article  CAS  Google Scholar 

  10. Levy AP, Levy NS, Goldberg MA . Hypoxia-inducible protein binding to vascular endothelial growth factor mRNA and its modulation by the von Hippel Lindau protein. J Biol Chem 1996; 271: 25492–25497.

    Article  CAS  Google Scholar 

  11. Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD et al. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 1996; 16: 4604–4613.

    Article  CAS  Google Scholar 

  12. Ravindranath N, Wion D, Brachet P, Djakiew D . Epidermal growth factor modulates the expression of vascular endothelial growth factor in the human prostate. J Androl 2001; 22: 432–443.

    PubMed  CAS  Google Scholar 

  13. Soker S, Takashima S, Miao HQ, Neufeld G, Klagsbrun M . Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 1998; 92: 735–745.

    Article  CAS  Google Scholar 

  14. Huss WJ, Hanrahan CF, Barrios RJ, Simons JW, Greenberg NM . Angiogenesis and prostate cancer: identification of a molecular progression switch. Cancer Res 2001; 61: 2736–2743.

    PubMed  CAS  Google Scholar 

  15. Hrouda D, Nicol DL, Gardiner RA . The role of angiogenesis in prostate development and the pathogenesis of prostate cancer. Urol Res 2003; 30: 347–355.

    PubMed  Google Scholar 

  16. Sweeney P, Karashima T, Kim SJ, Kedar D, Mian B, Huang S et al. Anti-vascular endothelial growth factor receptor 2 antibody reduces tumorigenicity and metastasis in orthotopic prostate cancer xenografts via induction of endothelial cell apoptosis and reduction of endothelial cell matrix metalloproteinase type 9 production. Clin Cancer Res 2002; 8: 2714–2724.

    PubMed  CAS  Google Scholar 

  17. Koong AC, Denko NC, Hudson KM, Schindler C, Swiersz L, Koch C et al. Candidate genes for the hypoxic tumor phenotype. Cancer Res 2000; 60: 883–887.

    CAS  Google Scholar 

  18. Canning MT, Postovit LM, Clarke SH, Graham CH . Oxygen-mediated regulation of gelatinase and tissue inhibitor of metalloproteinases-1 expression by invasive cells. Exp Cell Res 2001; 267: 88–94.

    Article  CAS  Google Scholar 

  19. Himelstein BP, Asada N, Carlton MR, Collins MH . Matrix metalloproteinase-9 (MMP-9) expression in childhood osseous osteosarcoma. Med Pediatr Oncol 1998; 31: 471–474.

    Article  CAS  Google Scholar 

  20. Isaacs JS, Jung YJ, Mimnaugh EG, Martinez A, Cuttitta F, Neckers LM . Hsp90 regulates a von Hippel Lindau-independent hypoxia-inducible factor-1 alpha-degradative pathway. J Biol Chem 2002; 277: 29936–29944.

    Article  CAS  Google Scholar 

  21. Neckers L . Hsp90 inhibitors as novel cancer chemotherapeutic agents. Trends Mol Med 2002; 8: S55–S61.

    Article  CAS  Google Scholar 

  22. Mabjeesh NJ, Post DE, Willard MT, Kaur B, Van Meir EG, Simons JW et al. Geldanamycin induces degradation of hypoxia-inducible factor 1 alpha protein via the proteosome pathway in prostate cancer cells. Cancer Res 2002; 62: 2478–2482.

    PubMed  CAS  Google Scholar 

  23. Minet E, Mottet D, Michel G, Roland I, Raes M, Remacle J et al. Hypoxia-induced activation of HIF-1, role of HIF-1 alpha-Hsp90 interaction. FEBS Lett 1999; 460: 251–256.

    Article  CAS  Google Scholar 

  24. Harris AL . Hypoxia--a key regulatory factor in tumour growth. Nat Rev Cancer 2002; 2: 38–47.

    Article  CAS  Google Scholar 

  25. Forbes K, Webb MA, Sehgal I . Growth factor regulation of secreted matrix metalloproteinase and plasminogen activators in prostate cancer cells, normal prostate fibroblasts and normal osteoblasts. Prostate Cancer Prostatic Dis 2003; 6: 148–153.

    Article  CAS  Google Scholar 

  26. Saramaki OR, Savinainen KJ, Nupponen NN, Bratt O, Visakorpi T . Amplification of hypoxia-inducible factor 1 alpha gene in prostate cancer. Cancer Genet Cytogenet 2001; 128: 31–34.

    Article  CAS  Google Scholar 

  27. Jiang BH, Jiang GQ, Zheng JZ, Lu ZM, Hunter T, Vogt PK . Phosphatidylinositol 3-kinase signaling controls levels of hypoxia-inducible factor. Cell Growth Differentiation 2001; 12: 363–369.

    PubMed  CAS  Google Scholar 

  28. Zhong H, Chiles K, Feldser D, Laughner E, Hanrahan C, Georgescu MM et al. Modulation of hypoxia-inducible factor 1 alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res 2000; 60: 1541–1545.

    PubMed  CAS  Google Scholar 

  29. Mottet D, Dumont V, Deccache Y, Demazy C, Ninane N, Raes M et al. Regulation of hypoxia-inducible factor-1 alpha protein level during hypoxic conditions by the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase 3 beta pathway in HepG2 cells. J Biol Chem 2003; 278: 31277–31285.

    Article  CAS  Google Scholar 

  30. Zhong H, Semenza GL, Simons JW, De Marzo AM . Up-regulation of hypoxia-inducible factor 1 alpha is an early event in prostate carcinogenesis. Cancer Detect Prevent 2004; 28: 88–93.

    Article  CAS  Google Scholar 

  31. Van Lieshout T, Stanisz J, Espiritu V, Richardson M, Singh G . A hypoxic response induced in MatLyLu cells by cobalt chloride results in an enhanced angiogenic response by the chick chorioallantoic membrane. Int J Oncol 2003; 23: 745–750.

    PubMed  CAS  Google Scholar 

  32. Blagosklonny MV . Hsp-90-associated oncoproteins: multiple targets of geldanamycin and its analogs. Leukemia 2002; 16: 455–462.

    Article  CAS  Google Scholar 

  33. Hayashibara T, Yamada Y, Miyanishi T, Mori H, Joh T, Maeda T et al. Vascular endothelial growth factor and cellular chemotaxis: a possible autocrine pathway in adult T-cell leukemia cell invasion. Clin Cancer Res 2001; 7: 2719–2726.

    PubMed  CAS  Google Scholar 

  34. Krishnamachary B, Berg-Dixon S, Kelly B, Agani F, Feldser D, Ferreira G et al. Regulation of colon carcinoma cell invasion by hypoxia-inducible factor 1. Cancer Res 2003; 63: 1138–1143.

    PubMed  CAS  Google Scholar 

  35. Postovit LM, Adams MA, Lash GE, Heaton JP, Graham CH . Oxygen-mediated regulation of tumor cell invasiveness – involvement of a nitric oxide signaling pathway. J Biol Chem 2002; 277: 35730–35737.

    Article  CAS  Google Scholar 

  36. Zagzag D, Nomura M, Friedlander DR, Blanco CY, Gagner JP, Nomura N et al. Geldanamycin inhibits migration of glioma cells in vitro: a potential role for hypoxia-inducible factor (HIF-1 alpha) in glioma cell invasion. J Cellular Physiol 2003; 196: 394–402.

    Article  CAS  Google Scholar 

  37. Solit DB, Zheng FF, Drobnjak M, Munster PN, Higgins B, Verbel D et al. 17-Allylamino-17-demethoxygeldanamycin induces the degradation of androgen receptor and HER-2/neu and inhibits the growth of prostate cancer xenografts. Clin Cancer Res 2002; 8: 986–993.

    PubMed  CAS  Google Scholar 

  38. Dias S, Hattori K, Zhu Z, Heissig B, Choy M, Lane W et al. Autocrine stimulation of VEGFR-2 activates human leukemic cell growth and migration. J Clin Invest 2000; 106: 511–521.

    Article  CAS  Google Scholar 

  39. Sato Y . Transcription factor ETS-1 as a molecular target for angiogenesis inhibition. Hum Cell 1998; 11: 207–214.

    PubMed  CAS  Google Scholar 

  40. Wang H, Keiser JA . Vascular endothelial growth factor upregulates the expression of matrix metalloproteinases in vascular smooth muscle cells: role of flt-1. Circ Res 1998; 83: 832–840.

    Article  CAS  Google Scholar 

  41. Hayashibara T, Yamada Y, Onimaru Y, Tsutsumi C, Nakayama S, Mori N et al. Matrix metalloproteinase-9 and vascular endothelial growth factor: a possible link in adult T-cell leukaemia cell invasion. Br J Haematol 2002; 116: 94–102.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully thank Myrna Espiritu for her technical assistance, and Eric Seidlitz for his critical corrections of the manuscript. This work was supported by grant from Canadian Institute of Health Research (CIHR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alqawi, O., Moghaddas, M. & Singh, G. Effects of geldanamycin on HIF-1α mediated angiogenesis and invasion in prostate cancer cells. Prostate Cancer Prostatic Dis 9, 126–135 (2006). https://doi.org/10.1038/sj.pcan.4500852

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.pcan.4500852

Keywords

This article is cited by

Search

Quick links